❶ 四階行列式怎麼計算
四階行列式的計算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化為
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其餘各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
(1)四階行列式的計算方法展開公式擴展閱讀:
性質
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
④行列式A中兩行(或列)互換,其結果等於-A。 ⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。
❷ 四階行列式怎麼計算
四階行列式的計算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化為
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其餘各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
(2)四階行列式的計算方法展開公式擴展閱讀
四階行列式的性質
1、在 n 維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。
2、行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
3、四階行列式由排成n階方陣形式的n²個數aij(i,j=1,2,...,n)確定的一個數,其值為n。
4、四階行列式中k1,k2,...,kn是將序列1,2,...,n的元素次序交換k次所得到的一個序列,Σ號表示對k1,k2,...,kn取遍1,2,...,n的一切排列求和,那麼數D稱為n階方陣相應的行列式。
❸ 四階行列式的計算方法是什麼
01❹ 四階行列式的計算公式
四階行列式的計算有許多方法:
1、可以拆成4個三階行列式,分別乘以相應的代數餘子式,然後相加。
2、可以先反復使用行列的線性變換,即一行(列)乘以某倍數加到另一行(列),化簡成
階梯型(上三角、下三角、甚至對角型)的行列式。
❺ 4階行列式的計算方法
四階行列式的計算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化為
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其餘各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
(5)四階行列式的計算方法展開公式擴展閱讀:
性質
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
④行列式A中兩行(或列)互換,其結果等於-A。 ⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。
❻ 求4階行列式計算方法
用兩條線把行列式劃成四個二階行列式,最後計算二階行列式的值得117。
將其中某一行或某一列的元素化為有盡可能多的零元素,然後按那行(列)展開,用其中每個元素乘以它的代數餘子式,即得結果。
四階行列式的計算方法:
第1步:把2、3、4列加到第1 列,提出第1列公因子 10,化為
1 2 3 4
1 3 4 1
1 4 1 2
1 1 2 3
第2步:第1行乘 -1 加到其餘各行,得
1 2 3 4
0 1 1 -3
0 2 -2 -2
0 -1 -1 -1
第3步:r3 - 2r1,r4+r1,得
1 2 3 4
0 1 1 -3
0 0 -4 4
0 0 0 -4
所以行列式 = 10* (-4)*(-4) = 160。
性質
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
以上內容參考:網路-行列式
❼ 如何計算四階行列式
n階行列式的計算
首先給出代數餘子式的定義。
在行列式
(7)四階行列式的計算方法展開公式擴展閱讀:
n階行列式的性質
性質1、行列互換,行列式不變。
性質2、把行列式中某一行(列)的所有元素都乘以一個數K,等於用數K乘以行列式。
性質3、如果行列式的某行(列)的各元素是兩個元素之和,那麼這個行列式等於兩個行列式的和。
性質4、如果行列式中有兩行(列)相同,那麼行列式為零。(所謂兩行(列)相同就是說兩行(列)的對應元素都相等)
性質5、如果行列式中兩行(列)成比例,那麼行列式為零。
性質6、把一行(列)的倍數加到另一行(列),行列式不變。
性質7、對換行列式中兩行(列)的位置,行列式反號。
參考資料來源:網路-n階行列式
❽ 四階行列式萬能公式是什麼
四階行列式萬能公式是:a11a22a33a44-a11a22a34a43。
四階行列式的計算首先要降低階數。對於n階行列式A,可以採用按照某一行或者某一列展開的辦法降階,一般都是第一行或者第一列,令原行列式為|A|則,第2行倍數減掉其他各行。
行列式在數學中,是一個函數,其定義域為det的矩陣A,取值為一個標量,寫作det(A)或|A| 。無論是在線性代數、多項式理論,還是在微積分學中(比如說換元積分法中),行列式作為基本的數學工具,都有著重要的應用。
行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在n維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。
性質:
①行列式A中某行(或列)用同一數k乘,其結果等於kA。
②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。
③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。
④行列式A中兩行(或列)互換,其結果等於-A。
⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。