A開頭的叫排列,C開頭的叫組合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
P是排列,右下腳碼n,右上腳碼m,n(n-1)(n-2)……(n-k+1);
C是組合,右下腳碼n,右上腳碼m,n(n-1)(n-2)……(n-k+1)/m!
(1)數列排列組合計算方法擴展閱讀:
假設C(n-1,k)和C(n-1,k-1)為奇數:
則有:(n-1)&k == k;
(n-1)&(k-1) == k-1;
由於k和k-1的最後一位(在這里的位指的是二進制的位,下同)必然是不同的,所以n-1的最後一位必然是1。
現假設n&k == k。
則同樣因為n-1和n的最後一位不同推出k的最後一位是1。
因為n-1的最後一位是1,則n的最後一位是0,所以n&k != k,與假設矛盾。
所以得n&k != k。