1. 一位小數乘二位小數怎麼乘
末尾數對齊。演算法和整數一樣。最後右後向前數小數點。如:一位小數乘兩位小數,就向前數3位。兩位小數乘兩位小數,就向前數4位。
2. 二位數×一位數口算怎樣計算得快
首先把這兩位拆分為幾十和幾,然後將這個幾十和幾分別乘以那個一位數,最將這兩個乘積相加就是最終答案。比如:28×6,將28拆分為20和8,然後20×6=120,8x6=48,最後將120+48=168就是最後答案了
多位數乘法的快速計算方法如下:
1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。
2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。
3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。
4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。
乘法原理:
如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。
在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。
設 A是 m×n 的矩陣。
可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故兩個方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以綜上 r(A)=r(A')=r(AA')=r(A'A)
4. 兩位數乘一位數的豎式的計算方法是什麼
兩位數乘一位數例子解析82×5
解題思路:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:2×5=10
步驟二:8×5=400
根據以上計算結果相加為410
驗算:410÷5=82
(4)一位數乘2位數的快速計算方法擴展閱讀{驗算結果}:將被除數從高位起的每一位數進行除數運算,每次計算得到的商保留,余數加下一位數進行運算,依此順序將被除數所以位數運算完畢,得到的商按順序組合,余數為最後一次運算結果
解題過程:
步驟一:41÷5=8 余數為:1
步驟二:10÷5=2 余數為:0
根據以上計算步驟組合結果為82
存疑請追問,滿意請採納
5. 兩位數乘一位數的口算方法一.把兩位數分解成()和(),分別乘一位數後把乘得的積()
兩位數乘一位數的口算方法,把兩位數分解成(整十數)和(個位數)分別乘一位數後把乘得的積(相加)。
舉例說明如下:
12x4
=10x4+2x4
=40+8
=48
乘法(multiplication),是指將相同的數加起來的快捷方式。
其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
6. 兩位數乘一位數的豎式計算是什麼
兩位數乘一位數的豎式計算過程,16乘3的豎式:
16*3=48
把幾次乘得的數加起來,整數末尾有0的乘法,可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。
列豎式的方法:
(1)先在上面一行寫第一個加數。如果兩加數位數不一樣,就先寫位數多的數。
(2)再在下面一行寫第二個加數。如果兩加數位數不一樣,就寫位數少的數。第二個數要和第一個數的數位對齊。
(3)把「+」號寫在第二個數的前面位置。
(4)式子中的「=」號用一條線橫線表示,寫在第二個數的下面。
(5)兩數計算的結果寫在橫線下面的位置,要和上面的數位對齊。
7. 有什麼方法可以令乘數更快速計算出來
兩個20以內數的乘法
兩個20以內數相乘,將一數的個位數與另一個數相加乘以10,然後再加兩個尾數的積,就是應求的得數。如12×13=156,計算程序是將12的尾數2,加至13里,13加2等於15,15×10=150,然後加各個尾數的積得156,就是應求的積數。
首同尾互補的乘法
兩個十位數相乘,首尾數相同,而尾十互補,其計算方法是:頭加1,然後頭乘為前積,尾乘尾為後積,兩積連接起來,就是應求的得數。如26×24=624。計算程序是:被乘數26的頭加1等於3,然後頭乘頭,就是3×2=6,尾乘尾6×4=24,相連為624。
乘數加倍,加半或減半的乘法
在首同尾互補的計算上,可以引深一步就是乘數可加倍,加半倍,也可減半計算,但是:加倍、加半或減半都不能有進位數或出現小數,如48×42是規定的演算法,然而,可以將乘數42加倍位84,也可以減半位21,也可加半倍位63,都可以按規定方法計算。48×21=1008,48×63=3024,48×84=4032。有進位數的不能算。如87×83=7221,將83加倍166,或減半41.5,這都不能按規定的方法計算。
首尾互補與首尾相同的乘法
一個數首尾互補,而另一個數首尾相同,其計算方法是:頭加1,然後頭乘頭為前積,尾乘尾為後積,兩積相連為乘積。如37×33=1221,計算程序是(3+1)×3×100+7×3=1221。
兩個頭互補尾相同的乘法
兩個十位數互補,兩個尾數相同,其計算方法是:頭乘頭後加尾數為前積,尾自乘為後積。如48×68=3264。計算程序是4×6=24 24+8=32 32為前積,8×8=64為後積,兩積相連就得3264。
首同尾非互補的乘法
兩個十位數相乘,首位數相同,而兩個尾數非互補,計算方法:頭加1,頭乘頭,尾乘尾,把兩個積連接起來。再看尾和尾的和比10大幾還是小幾,大幾就加幾個首位數,小幾就減掉幾個首位數。加減的位置是:一位在十位加減,兩位在百位加減。如36×35=1260,計算時(3+1)×3=12 6×5=30 相連為1230 6+5=11,比10大1,就加一個首位3,一位在十位加,1230+30=1260 36×35就得1260。再如36×32=1152,程序是(3+1)×3=12,6×2=12,12與12相連為1212,6+2=8,比10小2減兩個3,3×2=6,一位在十位減,1212-60就得1152。
一數相同一數非互補的乘法
兩位數相乘,一數的和非互補,另一數相同,方法是:頭加1,頭乘頭,尾乘尾,將兩積連接起來後,再看被乘數橫加之和比10大幾就加幾個乘數首。比10小幾就減幾個乘數首,加減位置:一位數十位加減,兩位數百位加減,如65×77=5005,計算程序是(6+1)×7=49,5×7=35,相連為4935,6+5=11,比10大1,加一個7,一位數十位加。4935+70=5005
兩頭非互補兩尾相同的乘法
兩個頭非互補,兩個尾相同,其計算方法是:頭乘頭加尾數,尾自乘。兩積連接起來後,再看兩個頭的和比10大幾或小幾,比10大幾就加幾個尾數,小幾就減幾個尾數,加減位置:一位數十位加減,兩位數百位加減。如67×87=5829,計算程序是:6×8+7=55,7×7=49,相連為5549,6+8=14,比10大4,就加四個7,4×7=28,兩位數百位加,5549+280=5829
任意兩位數頭加1乘法
任意兩個十位數相乘,都可按頭加1方法計算:頭加1後,頭乘頭,尾乘尾,將兩個積連接起來後,有兩比,這兩比是非常關鍵的,必須牢記。第一是比首,就是被乘數首比乘數首小幾或大幾,大幾就加幾個乘數尾,小幾就減幾個乘數尾。第二是比兩個尾數的和比10大幾或小幾,大幾就加幾個乘數首,小幾就減幾個乘數首。加減位置是:一位數十位加減,兩位數百位加減。如:35×28=980,計算程序是:(3+1)×2=8,5×8=40,相連為840,這不是應求的積數,還有兩比,一是比首,3比2大1,就要加一個乘數尾,加8,二是比尾,5+8=13,13比10大3,就加3個乘數首,3×2=6,8+6=14,兩位數百位加,840+140=980。再如:28×35=980, 計算程序是:(2+1)×3=9,8×5=40,相連位940,一是比首,2比3小1,減一個乘數尾,減5,二是比尾,8+5=13,比10大3,加三個3,3×3=9,9-5=4,一位數十位加,940+40=980。
首位都是5的乘法
兩個十位數相乘,首位都是5時,先求出5的平方,再求出尾數和的一半,加平方數里,為前積,然後求兩個尾數的積,為後積,連接起來就應求的得數。如58×54=3132,其計算程序是:5×5=25,8+4=12,12的半數6,25+6=31,再加8×4=32。兩積相連為3132。58×54就得3132。
尾數都是5的乘法
兩個十位數相乘,尾數都是5的乘法,先求出首位數的積,再加上首和的一半為前積,再加尾5的平方,就是應求的數。如:65×85=5525,計算程序是:6×8=48,6+8=14,半數為7,48+7=55,5×5=25,連接起來,就得5525。
8. 乘法巧算速算方法
1、一位數乘法法則整數乘法低位起,一位數乘法一次積。
個位數乘得若干一,積的末位對個位。
計算準確對好位,乘法口訣是根據。
2、兩位數乘法法則整數乘法低位起,兩位數乘法兩次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
計算準確對好位,兩次乘積加一起。
1、多位數乘法法則整數乘法低位起,幾位數乘法幾次積。
個位數乘得若干一,積的末位對個位。
十位數乘得若干十,積的末位對十位。
百位數乘得若干百,積的末位對百位計算準確對好位,幾次乘積加一起。
2、因數末尾有0的乘法法則因數末尾若有0,寫在後面先不乘,乘完積補上0,有幾個0寫幾個0。
乘法的計演算法則:
(1)數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0)
9. 自出2O道,一位數乘兩位數的連續進位乘法,豎式計算
每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以2,如果需要進位,則往前面進1,然後個位升十位,以此類推,而個位上補上新的運算數字。
10. 一位數乘兩三位數如何快速計算
一位數乘兩三位數巧算9×321
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
9×321
=10×321-321
=3210-321
=2889
存疑請追問,滿意請採納