導航:首頁 > 計算方法 > 乘方是計算方法嗎

乘方是計算方法嗎

發布時間:2022-06-18 02:48:43

❶ 乘方的所有計演算法則

認真看一下,所有法則都在這里了,am表示a的m次方,其它類推~~~
同底數冪的乘法公式和法則
(1)公式:
am·an=am+n(m、n都是正整數)
am·an·ap=am+n+p(m、n、p都是正整數)
(2)法則:
同底數冪相乘,底數不變,指數相加.
注意:Ⅰ.在此公式中,底數a可代表數字,字母也可以是一個代數式.
Ⅱ.此公式相乘的冪必須底數相同,若不相同,需進行調整,化為同底數,才可用公式.
1.冪的乘方的公式及法則
(1)公式:
(am)n=amn(m、n都是正整數)
〔(am)n〕p=amnp(m、n、p都是正整數)
(2)法則
冪的乘方,底數不變,指數相乘.
2.積的乘方的公式和法則
(1)公式
(ab)n=an·bn(n是正整數)
(abc)n=an·bn·cn(n是正整數)
(2)法則
積的乘方等於每一個因數乘方的積.
上述兩個公式,在很多情況下都會用到逆運算,即:amn=(am)n=(an)m(m、n為正整數)
an·bn=(ab)n(n是正整數)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的體積與半徑的倍數關系
(1)如果一個球的半徑擴大n倍,則它的體積擴大n3倍.
(2)如果甲球的半徑是乙球的n倍,那麼甲球的體積是乙球的n3倍
1.同底數冪的除法公式和法則
(1)公式:
am÷an=am-n(a≠0,m、n都是正整數,m>n)
(2)法則:
同底數冪相除,底數不變,指數相減.
注意:滿足公式成立的條件.
2.零指數與負指數
規定:a0=1(a≠0)
a-p=
(a≠0,p是正整數)
說明:當有了上述兩個規定後,也就是說冪的指數可以為0或負數,因此「同底數冪的除法」公式中,am-n中「m-n」可以為正數、負數或0,所以「m>n」的條件也可消去.
.單項式乘單項式
單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.單項式乘單項式的結果仍是單項式.
Ⅱ.凡是在單項式中出現過的字母在結果里應該全有,不要漏掉因式.
Ⅲ.結果的次數應等於兩個單項式的次數之和.
2.單項式乘多項式
單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加.
注意:Ⅰ.單項式乘多項式,多項式有幾項(沒有同類項),結果就有幾項.
Ⅱ.主要依據的就是乘法的分配律,一定要保證單項式與多項式的每一項都相乘,要注意每一項乘積的符號.
3.多項式乘多項式
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得積相加.
你要知道的:Ⅰ.多項式乘多項式,積仍是多項式,且積的項數小於或等於兩個多項式項數的積.
Ⅱ.乘的過程中,不要漏掉,注意每項的符號.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
兩數和與這兩數差的積,等於它們的平方差.
(2)特徵:
①左邊:二項式乘以二項式,兩數(a與b)的和與它們差的乘積.
②右邊:這兩數的平方差.
(3)找a與b的簡便方法
由於(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在這兩個多項式中,a是相同的,而b與-b是互為相反數,那麼a2-b2就可看作是符號相同的項(a)的平方減去符號相反的項(b與-b)的平方.
因此,運用平方差公式進行運算,關鍵是找出兩個相乘的二項式中相同的項作為a,互為相反的項作為b.

❷ 乘方怎麼計算

(-36)^5就是5個(-36)相乘、約得:(-6.05×10^7)、如果一個負冪的乘方是偶數那麼冪前面的符號可以直接省略、

❸ 計算機怎麼算乘方,詳細的

計算方法嗎?應該是連續做乘法,至於乘法是怎麼算的,我記得好像是通過對二進制數據移位操作實現的。時間有點久記得不是太清楚了。現在除了你用匯編語言編程沒人會在意它是怎麼算的吧

什麼叫乘方

乘方的概念

一.乘方的意義、各部分名稱及讀寫
求n個相同乘數乘積的運算叫做乘方。乘方算是一個三級運算。
在a^n中,相同的乘數a叫做底數,a的個數n叫做指數,乘方運算的結果a^n叫做冪。a^n讀作a的n次方,如果把a^n看作乘方的結果,則讀作a的n次冪。a的二次方(或a的二次冪)也可以讀作a的平方;a的三次方(或a的三次冪)也可以讀作a的立方。
每一個自然數都可以看作這個數的一次方,也叫作一次冪。如:8可以看作8^1。當指數是1時,通常省略不寫。
運算順序:先算乘方,後算乘除,最後算加減。
1.相同乘數相乘的積用乘方表示
2.根據乘方的意義計算出答案
1)9^4; 2)0^6。
9^4=9×9×9×9=6561
0^6=0×0×0×0×0×0=0
可以看出0^n=0
4.區別易混的概念
1)8^3與8×3; 2) 5×2與5^2; 3)4×5^2與(4×5)^2。

同底數冪的乘、除法法則

同底數冪的乘法法則:
同底數冪相乘除,原來的底數作底數,指數的和或差作指數。用字母表示為:
a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均為自然數)
1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^90
1)15^2×15^3=15^(2+3)=15^5
2)3^2×3^4×3^8=3^(2+4+8)=3^14
3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095

冪的乘方法則

a^m又叫做冪,如果把a^m看作是底數,那麼它的n次方就可以表示為(a^m)^n。這就叫做冪的乘方。我們先來計算(a^3)^4。
把a3看作是底數,根據乘方的意義和同底數的冪的乘法法則可以得出:
(a^3)^4=a^3×a^3×a^3×a^3=a^(3+3+3+3)=a^(3×4)=a^12 即:(a^3)^4=a^(3×4)
同樣,(a^2)^5=a^2×a^2×a^2×a^2×a^2=a^(2+2+2+2+2)=a^(2×5)=a^10 即:(a^2)^5=a^(2×5)
由以上例子可知,冪的乘方,底數不變,指數相乘。用字母表示為:(a^m)^n=a^(m×n)
(x^4)^2; (a^2)^4×(a^3)^5
(x^4)^2=x^(4×2)=x^8
(a^2)^4×(a^3)^5=a^(2×4)×a^(3×5)=a^8×a^15=a^(8+15)=a^23

積的乘方

積的乘方,先把積中的每一個乘數分別乘方,再把所得的冪相乘。用字母表示為:(a×b)^n=a^n×b^n
這個積的乘方法則也適用於三個以上乘數積的乘方。如:
(a×b×c)^n=a^n×b^n×c^n

平方差公式

兩個數的和乘以這兩個數的差,等於這兩個數的平方差。用字母表示為:
(a+b)×(a-b)=a^2-b^2
這個公式叫做平方差公式。利用這個公式,可以使一些計算變得簡便。
例 用簡便方法計算104×96。
解:原式=(100+4)×(100-4)=100^2-42=10000-16=9984

完全平方公式

兩數和(或差)的平方,等於它們的平方的和加上(或者減去)它們的積的2倍。用字母表示為:
(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2
上面這兩個公式叫做完全平方公式。應用完全平方公式,可以使一些乘方計算變得簡便。
例 計算下面各題:1)105^2; 2)196^2。
1)105^2=(100+5)^2=100^2+2×100×5+5^2=10000+1000+25=11025
2)196^2=(200-4)^2=200^2-2×100×4+4^2=40000-800+16=39216

平方數的速算

有些較特殊的數的平方,掌握規律後,可以使計算速度加快,現介紹如下。
1.求由n個1組成的數的平方
我們觀察下面的例子。
1^2=1
11^2=121
111^2=12321
1111^2=1234321
11111^2=123454321
111111^2=12345654321
……
由以上例子可以看出這樣一個規律;求由n個1組成的數的平方,先由1寫到n,再由n寫到1,即:
11…1^2=1234…(n-1)n(n-1)…4321
n個1
注意:其中n只佔一個數位,滿10應向前進位,當然,這樣的速算不宜位數過多。
2.由n個3組成的數的平方
我們仍觀察具體實例:
3^2=9
33^2=1089
333^2=110889
3333^2=11108889
33333^2=111108889
由此可知:
33…3^2 = 11…11 0 88…88 9
n個3 (n-1)個1 (n-2)個8
3.個位數字是5的數的平方
把a看作10的個數,這樣個位數字是5的數的平方可以寫成;(10a+5)^2的形式。根據完全平方式推導;
(10a+5)^2=(10a)^2+2×10a×5+5^2
=100a^2+100a+25
=100a×(a+1)+25
=a×(a+1)×100+25
由此可知:個位數字是5的數的平方,等於去掉個位數字後,所得的數與比這個數大1的數相乘的積,後面再寫上25。
例 計算 1)45^2; 2)115^2。
解:1)原式=4×(4+1)×100+25 2)原式=11×(11+1)×100+25
=2000+25 =11×12×100+25
=2025 =13200+25
=13225
4.同指數冪的乘法
a^2×b^2是同指數的冪相乘,可以寫成下面形式:
a^2×b^2=a×a×b×b=(a×b)×(a×b)=(a×b)^2
由此可知:同指數冪的乘法,等於底數的乘積做底數,指數不變。根據這個法則可以使計算簡便。如:2^2×5^2=(2×5)^2=10^2=100
2^3×5^3=(2×5)^3=10^3=1000 2^4×5^4=(2×5)^4=10^4=10000
根據上面算式,可以得出這樣一個結論:

❺ 乘方如何用數學符號表示乘方是如何運算的

求n個相同因數乘積的運算叫做乘方(power)。

乘方算是一個三級運算。在a^n中,相同的乘數a叫做底數(base number),a的個數n叫做指數(exponent),乘方運算的結果a^n叫做冪(念mì)。

a^n讀作a的n次方,如果把a^n看作乘方的結果,則讀作a的n次冪。a的二次方(或a的二次冪)也可以讀作a的平方;a的三次方(或a的三次冪)也可以讀作a的立方。

❻ 乘方運算是什麼

求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪(power)。

其中,a叫做底數(base number),n叫做指數(exponent)。當a看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。

相關信息:

一個數都可以看作自己本身的一次方,指數1通常省略不寫。在寫分數和負數的n次方時要加括弧。四則運算順序:先乘方,再括弧(先小括弧,再中括弧,最後大括弧),接乘除,尾加減。

計算一個數的小數次方,如果那個小數是有理數,就把它化為 (即分數)的形式。特別的,除0以外的任何數的0次方均等於1。0的非正指數冪沒有意義。

❼ 乘方怎麼算

乘方是求n個相同因數乘積的運算,乘方的結果叫做冪。表達:a^n。
a^n其中,a叫做底數,n叫做指數,當a^n看作a的n次方的結果時,也可讀作「a的n次冪」。一個數都可以看作這個本身數的一次方。指數1通常省略不寫。
運算順序:先乘方,再括弧(先小括弧,再中括弧,最後大括弧),接乘除,尾加減。計算一個數的小數次方,如果那個小數是有理數,就把它化為 (即分數)的形式,那麼特別的,或者說,任何數的0次方等於1,0除外。
乘方公式:
1.
同底數冪法則:同底數冪相乘除,原來的底數作底數,指數的和或差作指數。
a^m·a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均為自然數)
2.
正整數指數冪法則:a^k=a*a*....*a(k個a),其中k∈N*(即k為正整數)
3.
指數為0冪法則:a^0=1 ,其中a≠0 ,k∈N*
4.
負整數指數冪法則:a^(-k)=1/(a^k) ,其中a≠0,k∈N*

❽ 乘方算屬於乘法么那開方屬於除法么

乘方是因數相同的乘法,求的是兩個因數相乘的積,因此屬於乘法。
除法是已知被除數和除數求商。但是開方卻不是已知除數求商,反而有點類似除數和商都不知道。如:256開方,你開始並不知道除數和商是多少,因此不能算是除法。

❾ 乘方算屬於乘法么那開方屬於除法么~

還沒理解到真諦,小學生么,難怪的。
我只想說,除法也屬於乘法,減法也屬於加法。。而乘法亦屬於加法,乘方么當然是乘法的特殊情況了,就是所謂的冪運算。。所以一切的一切都屬於加法,呵呵

至於其他的。。指、冪、對。。微積分。。有點深奧了

比如你說的9/3是不是=9*1/3?
1-2是不是=1+(-2)?

數都是加出來的,至於其他法則都是人類為了方便,對於不同類的特殊問題規定出的其他的法則,不多說了,說多了估計你迷糊

❿ 乘方如何計算

乘方的運演算法則有同底數冪法則,正整數指數冪法則,分數的乘方法則,積的乘方,同指數冪乘法,完全平方等運演算法則。

乘方的運演算法則

一.乘方的運演算法則

1.同底數冪法則:同底數冪相乘除,原來的底數作底數,指數的和或差作指數。a^m×a^n=a^(m+n)

a^m÷a^n=a(m-n)

2.正整數指數冪法則

(a^k=a×a×…×a),其中k∈N^*(既k為正整數)

3.平方差:兩數和乘兩數差等於它們的平方差。

用字母表示為:(a+b)(a-b)=a^2-b^2

4.分數的乘方法則

(a/b)^k=a^k/b^k

5.冪的乘方法則:冪的乘方,底數不變,指數相乘。

用字母表示為:(a^m)^n=a^(m×n)

6.積的乘方:積的乘方,先把積中的每一個因數分別乘方,再把所得的冪相乘。

用字母表示為:(a×b)^n=a^n×b^n

7.同指數冪乘法:同指數冪相乘,指數不變,底數相乘。

8.完全平方:兩數和(或差)的平方,等於它們的平方的和加上(或者減去)它們的積的2倍。

二.有理數乘方的符號法則

1.負數的偶次冪是正數,負數的奇數冪是負數。

2.正數的任何次冪都是正數。

3.0的任何正數次冪都是0。

am表示a的m次方,其它類推~~~
同底數冪的乘法公式和法則
(1)公式:
am·an=am+n(m、n都是正整數)
am·an·ap=am+n+p(m、n、p都是正整數)
(2)法則:
同底數冪相乘,底數不變,指數相加.
注意:Ⅰ.在此公式中,底數a可代表數字,字母也可以是一個代數式.
Ⅱ.此公式相乘的冪必須底數相同,若不相同,需進行調整,化為同底數,才可用公式.
1.冪的乘方的公式及法則
(1)公式:
(am)n=amn(m、n都是正整數)
〔(am)n〕p=amnp(m、n、p都是正整數)
(2)法則
冪的乘方,底數不變,指數相乘.
2.積的乘方的公式和法則
(1)公式
(ab)n=an·bn(n是正整數)
(abc)n=an·bn·cn(n是正整數)
(2)法則
積的乘方等於每一個因數乘方的積.
上述兩個公式,在很多情況下都會用到逆運算,即:amn=(am)n=(an)m(m、n為正整數)
an·bn=(ab)n(n是正整數)
如:912=(93)4=(94)3
310×510=(3×5)10=1510
3.球的體積與半徑的倍數關系
(1)如果一個球的半徑擴大n倍,則它的體積擴大n3倍.
(2)如果甲球的半徑是乙球的n倍,那麼甲球的體積是乙球的n3倍
1.同底數冪的除法公式和法則
(1)公式:
am÷an=am-n(a≠0,m、n都是正整數,m>n)
(2)法則:
同底數冪相除,底數不變,指數相減.
注意:滿足公式成立的條件.
2.零指數與負指數
規定:a0=1(a≠0)
a-p= (a≠0,p是正整數)
說明:當有了上述兩個規定後,也就是說冪的指數可以為0或負數,因此「同底數冪的除法」公式中,am-n中「m-n」可以為正數、負數或0,所以「m>n」的條件也可消去.
.單項式乘單項式
單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式.
如:(2a2)·(3a)=(2×3)(a2·a)=6a3
注意啦!Ⅰ.單項式乘單項式的結果仍是單項式.
Ⅱ.凡是在單項式中出現過的字母在結果里應該全有,不要漏掉因式.
Ⅲ.結果的次數應等於兩個單項式的次數之和.
2.單項式乘多項式
單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加.
注意:Ⅰ.單項式乘多項式,多項式有幾項(沒有同類項),結果就有幾項.
Ⅱ.主要依據的就是乘法的分配律,一定要保證單項式與多項式的每一項都相乘,要注意每一項乘積的符號.
3.多項式乘多項式
多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得積相加.
你要知道的:Ⅰ.多項式乘多項式,積仍是多項式,且積的項數小於或等於兩個多項式項數的積.
Ⅱ.乘的過程中,不要漏掉,注意每項的符號.
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
兩數和與這兩數差的積,等於它們的平方差.
(2)特徵:
①左邊:二項式乘以二項式,兩數(a與b)的和與它們差的乘積.
②右邊:這兩數的平方差.
(3)找a與b的簡便方法
由於(a+b)(a-b)可看作(a+b)〔a+(-b)〕,所以在這兩個多項式中,a是相同的,而b與-b是互為相反數,那麼a2-b2就可看作是符號相同的項(a)的平方減去符號相反的項(b與-b)的平方.
因此,運用平方差公式進行運算,關鍵是找出兩個相乘的二項式中相同的項作為a,互為相反的項作為b.

閱讀全文

與乘方是計算方法嗎相關的資料

熱點內容
最簡單的技術升壓方法 瀏覽:523
民航商業方法類知識產權有哪些 瀏覽:882
bbs的使用方法 瀏覽:980
mac版優酷下載的視頻在哪裡設置方法 瀏覽:361
蘋果7揚聲器哪裡設置方法 瀏覽:197
河北美術計算方法有哪些 瀏覽:816
新風管風量計算方法 瀏覽:427
電燈遙控器電池安裝方法 瀏覽:600
金珠的檢測方法 瀏覽:328
水波的計算方法 瀏覽:591
木耳怎麼保存方法 瀏覽:650
論文常見的問題以及解決方法 瀏覽:73
拔自己的牙有什麼方法 瀏覽:129
電腦裁線機操作方法 瀏覽:522
水泵葉輪外圓磨損的修理方法如何 瀏覽:97
文竹的養殖方法大全圖片 瀏覽:29
hiv快速檢測方法及應用 瀏覽:397
教學設計的方法和技巧初中美術 瀏覽:201
單腿獨立站不穩怎麼破方法來了 瀏覽:590
電腦wps打表的方法 瀏覽:543