㈠ 求導公式運演算法則
運演算法則
減法法則:(f(x)-g(x))'=f'(x)-g'(x)
加法法則:(f(x)+g(x))'=f'(x)+g'(x)
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
導數公式
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
㈡ 關於導數的簡單計算
求導的方法:(1)求函數y=f(x)在x0處導數的步驟: ① 求函數的增量Δy=f(x0+Δx)-f(x0) ② 求平均變化率 ③ 取極限,得導數。(2)幾種常見函數的導數公式: ① C'=0(C為常數); ② (x^n)'=nx^(n-1) (n∈Q); ③ (sinx)'=cosx; ④ (cosx)'=-sinx; ⑤ (e^x)'=e^x; ⑥ (a^x)'=a^xIna (ln為自然對數) ⑦ loga(x)'=(1/x)loga(e) (3)導數的四則運演算法則: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 ④[u(v)]'=[u'(v)]*v' (u(v)為復合函數f[g(x)])(4)復合函數的導數 復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
㈢ 導數的計算方法
導數的計算方法主要有極限定義法、公式法以及導數的和、差、乘積、商的求導法則。
基本函數的導數均有計算公式,需要記住,例如:
(kx+b)'=k;
(ax^2+bx+c)=2ax+b;
(a^x)'=a^x*lna;
(x^a)'=ax^(a-1);
(sinx)'=cosx;
(logax)'=1/xlna,等等。
㈣ 導數的運演算法則是怎麼樣的
導數的運演算法則:
減法法則:(f(x)-g(x))'=f'(x)-g'(x)。
加法法則:(f(x)+g(x))'=f'(x)+g'(x)。
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2。
導函數
如果函數的導函數在某一區間內恆大於零(或恆小於零),那麼函數在這一區間內單調遞增(或單調遞減),這種區間也稱為函數的單調區間,導函數等於零的點稱為函數的駐點,在這類點上函數可能會取得極大值或極小值(即極值可疑點)。
進一步判斷則需要知道導函數在附近的符號,對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。
㈤ 求導公式有哪些 加減乘除的求導公式
這里將列舉幾個基本的函數的導數以及它們的推導過程:
1.y=c(c為常數)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整個變數,而g'(x)中把x看作變數』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行於x軸的直線,所以處處的切線都是平行於x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x這兩個結果後能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向於0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x後得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x
y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時,⊿x/x趨向於0而x/⊿x趨向於∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx
y'=1/x。
這時可以進行y=x^n
y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx•(nlnx)'=x^n•n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
自己上網去查吧,很多啊
㈥ 我想要求導函數的加減運算公式
加減:y=u土v,y'=u'土v' 乘除:y=uv,y'=u'v+uv' y=u/v,y'=(u'v-v'u)/v2
㈦ 導數的四則運演算法則公式是什麼
導數公式指的是基本初等函數的導數公式,導數運演算法則主要包括四則運演算法則、復合函數求導法則(又叫「鏈式法則」)。
復合函數導數公式
(2)根據「復合函數求導公式」可知,「y對x的導數,等於y對u的導數與u對x的導數的乘積」。
【例】求y=sin(2x)的導數。
解:y=sin(2x)可看成y=sinu與u=2x的復合函數。
因為(sinu)'=cosu,(2x)'=2,
所以,[sin(2x)]'=(sinu)'×(2x)'
=cosu×2=2cosu=2cos(2x)。
五、可導函數在一點處的導數值的物理意義和幾何意義
(1)物理意義:可導函數在該點處的瞬時變化率。
(2)幾何意義:可導函數在該點處的切線斜率值。
【注】一次函數「kx+b(k≠0)」的導數都等於斜率「k」,即(kx+b)'=k。
㈧ 導數的加減乘除法則謝謝了
u(x),v(x)可導:
(u±v)′=u′±v′
(uv)′=u′v+uv′
(u/v)=(u′v-uv′)/v² (v≠0)
計算已知函數的導函數可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函數都可以看作是一些簡單的函數的和、差、積、商或相互復合的結果。只要知道了這些簡單函數的導函數,那麼根據導數的求導法則,就可以推算出較為復雜的函數的導函數。
不是所有的函數都有導數
一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對於可導的函數f(x),x↦f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以反過來求原來的函數,即不定積分。
㈨ 導數運演算法則
運演算法則
減法法則:(f(x)-g(x))'=f'(x)-g'(x)
加法法則:(f(x)+g(x))'=f'(x)+g'(x)
乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
(9)導數的加法計算方法擴展閱讀:
導數公式
1、y=c(c為常數) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna
y=e^x y'=e^x
4、y=logax y'=logae/x
y=lnx y'=1/x
5、y=sinx y'=cosx
6.y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
㈩ 高中求導公式運演算法則
高中求導公式運演算法則:
1、減法法則:(f(x)-g(x))'=f'(x)-g'(x)
2、加法法則:(f(x)+g(x))'=f'(x)+g'(x)
3、乘法法則:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
4、除法法則:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
求導是數學計算中的一個計算方法,它的定義就是,當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。