㈠ 加減乘除的計算方法
先乘除,後加減,有括弧的先算括弧里的.
整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母
㈡ 整數除法的計演算法則
整數除法的計演算法則(1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;(2)除到被除數的哪一位,就在那一位上面寫上商;(3)每次除後餘下的數必須比除數小.
㈢ 整數的計算方法
整數加、減:把數位對齊,從低位加起。
整數乘法:相同數位對齊,從乘法的末位算起,用乘法的每一位去乘被乘數,得數的末位和乘數對齊。
整數除法:從被除數的最高位除起,除到被除數的哪一位,商就寫在那一位上面,每次除後餘下的數必須比余數小。
整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數、分數。
如果不加特殊說明,我們所涉及的數都是整數,所採用的字母也表示整數。
(3)整數除減數的計算方法擴展閱讀:
整數中,能夠被2整除的數,叫做偶數。不能被2整除的數則叫做奇數。即當n是整數時,偶數可表示為2n(n為整數);奇數則可表示為2n+1(或2n-1)。
偶數包括正偶數(亦稱雙數)、負偶數和0。所有整數不是奇數,就是偶數。
在十進制里,我們可用看個位數的方式判斷該數是奇數還是偶數:個位為1,3,5,7,9的數為奇數;個位為0,2,4,6,8的數為偶數。
整除特徵:
1. 若一個數的末位是單偶數,則這個數能被2整除。
2. 若一個數的數字和能被3整除,則這個整數能被3整除。
3. 若一個數的末尾兩位數能被4整除,則這個數能被4整除。
4. 若一個數的末位是0或5,則這個數能被5整除。
5. 若一個數能被2和3整除,則這個數能被6整除。
㈣ 除法到底怎麼計算啊我會乘法就是不會除法,
除法的計算分為整數除法,小數除法,分數除法。計算方法分別如下:
1.整數
(1)從被除數的高位除起;
(2)除數是幾位數,就先看被除數的前幾位,如果不夠除,就要多看一位;
(3)除到哪一位就要把商寫在哪一位上面;
(4)每次除得的余數必須比除數小;
(5)求出商的最高位後如果被除數的哪一位上不夠商1就在哪一位上寫0;
2.小數
(1)除數是整數時,按整數除法進行計算,商的4、數點要與被除數的小數點對齊;
(2)除數是小數時,先轉化成除數是整數的小數除法,再按照除數是整數的外數除法進行計算;
3.分數
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
除法運算性質
①若某數除以(或乘)一個數,又乘(或除以)同一個數,則這個數不變。例如:68÷17×17=68(或68×17÷17=68)。
②一個數除以幾個數的積,可以用這個數依次除以積里的各個因數。例如:320÷(2×5×8)=320÷2÷5÷8=4。
③一個數除以兩個數的商,等於這個數先除以商中的被除數,再乘商中的除數。例如:56÷(8÷4)=56÷8×4=28。
④幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。例如:8×72 X 4÷9=72÷9×8×4=256。
⑤幾個數的和除以一個數,可以先讓各個加數分別除以這個數,然後再把各個商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。
⑥兩個數的差除以一個數,可以從被減數除以這個數所得的商里,減去減數除以這個數所得的商。例如:(65-39)÷13=65÷13-39÷13=2。
㈤ 整數除法的計算方法
1)從被除數的高位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
㈥ 整數除法的運算順序是什麼
整數除法的運算順序是:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。
㈦ 計算方法和整數減法的方法是什麼
減法是四則運算之一,從一個數量中減去另一個數量的運算叫做減法;
已知兩個加數的和與其中一個加數,求另一個加數的運算叫做減法。
表示減法的符號是「-」,讀作減號。用來計算減量。
借位計算
減法不一定要硬算,也可以簡算。這個方法適用於學前班、一年級的小孩學。
例如:24-8=16
可以這樣想:借位14-8,先用10-8=2,再用2+4=6,差個位一定就是6,十位算就簡單了。
就是說,借位後,去掉個位的數字先減,然後用減出來的數去加少減的個位的數,十位就不難了。
不過前提是被減數個位一定要比減數個位小才能簡算。
㈧ 計算方法和整數加減法的計算方法是什麼
整數加法:個位沖齊,從最低位加起,滿10進1。
整數減法:個位沖齊,從最低位減起,遇到哪一個位不夠減時,向前一位借「1」當10加上被減數相應數位上的數再減減數相應數位上的數。
㈨ 整數加減乘除計演算法則是什麼
運演算法規則:
1.整數加法計演算法則
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2.整數減法計演算法則
相同數位對齊,從低位減起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
3、整數乘法法則:
(1)從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
4、整數的除法法則
(1)從被除數的高位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
(2)除到被除數的哪一位,就在那一位上面寫上商;
(3)每次除後餘下的數必須比除數小。