計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。從小數從右開始數,去掉第一個不是0後面的0,小數大小不變。
例如:
根據13×28=364,很快地寫出下面各式的積。
1.3×2.8=( 3.64 ) 0.13×0.28=( 0.0364 )13×2.8=( 36.4 )
(1)小數的計算方法擴展閱讀:
一、小數乘法中的倍數問題及小數乘法的驗算
1、一個數(0除外)乘大於1的數,積比原來的數大。一個數(0除外)乘小於1的數,積比原來的數小。
2、小數乘法的驗算方法:可以把因數位置交換位置相乘,也可以用估算、用計算器來驗算。
二、積的近似數:保留a位小數,就看第a+1位,再用四捨五入的方法取值。
例如:把7.956保留一位小數是 8.0,保留兩位小數是7.96。
⑵ 小數乘除法計演算法則
小數乘除法計演算法則:
1、小數的乘法計演算法則:
先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用"0"補足。
2、小數的除法計演算法則:
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補"0"),然後按照除數是整數的除法法則進行計算。
)。
⑶ 小數簡便運算的技巧
小數的簡便運算先看,如果有兩個小數能湊整的,就先把兩個小數加起來,也就先加那兩個小數,比如說1.6和2.4加起來就等於4。這個的話數學課本上應該有的,你可以多去看一看數學課本。上課的時候也應該認真聽講。
⑷ 小數數學計算公式
數學的全部公式太多了,沒法說。
可能你是說小學的吧。
分數和小數互化,通常記住下面幾個就可以了。
1/2=0.5
1/4=0.25
3/4=0.75
1/5=0.2
2/5=0.4
3/5=0.6
4/5=0.8
1/8=0.125
3/8=0.375
5/8=0.625
7/8=0.875
下面兩組不作要求:
1/3=0.3......
2/3=0.6......
1/7=0.142857.......
2/7=0.285714......
3/7=0,571428......
⑸ 簡單的小數加減法的計演算法則
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
總結:在計算小數加減法時,要將小數點對齊,也就是要將各個數位對齊。
(5)小數的計算方法擴展閱讀
舉個例子:小芳老師在超市買了一些蘋果和橘子,蘋果花了8.6元,橘子花了6.2元,請問一共花了多少元,8.6元就是8元6角,6.2元就是6元2角,8元+6元就是14元,6角+2角就是8角,也就是一共花了14元8角,即14.8元。
所以8.6+6.2就等於14.8。所以,小數加法在列豎式計算時,要將各個數位對齊,也就是將小數點對齊。小數的減法同理。
⑹ 小數簡便計算方法總結
簡算是一種簡便、迅速的運算,根據算式的不同特點,利用數的組成和分解、各種運算定律、性質或它們之間的特殊關系,使計算過程簡單化,或直接得出結果。根據歸納,常見以下幾類題型:
(一)「湊整巧算」——運用加法的交換律、結合律進行計算。要求學生善於觀察題目,同時要有湊整意識。
【評注】湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。
1、加法交換律
定義:兩個數交換位置和不變,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法結合律
定義:先把前兩個數相加,或者先把後兩個數相加,和不變。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——湊整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【評注】所謂的湊整,就是兩個或三個數結合相加,剛好湊成整十整百,譬如此題,「1.999」剛好 與「2」相差0.001,因此我們就可以先把它讀成「2」來進行計算。但是,一定要記住剛 才「多加的」要「減掉」。「多減的」要「加上」!
(二)運用乘法的交換律、結合律進行簡算。
1、乘法交換律
定義:兩個因數交換位置,積不變.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法結合律
定義:先乘前兩個因數,或者先乘後兩個因數,積不變。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
(三)運用減法的性質進行簡算,同時注意逆進行。
1、減法
定義:一個數連續減去兩個數,可以先把後兩個數相加,再相減。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的運用】
例如:20-8-2=20-(8+2)
(四)運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。
1、除法
定義:一個數連續除去兩個數 ,可以先把後兩個數相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定義:除數除以被除數,把被除數拆為兩個數字連除(這兩個數的積一定是這個被除數)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)運用乘法分配律進行簡算
1、乘法分配律
定義:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
【注意】:有些題目是運用分配律的逆運算來簡算:A×C+B×C=(A+B)×C:即提取公因數。
例如:75.3×99+75.3=75.3×(99+1)=75.3×100=7530
(六)混合運算(根據混合運算的法則)
註:數字搭檔( 0.5和2、0.25和4、0.125和8)
總的說來,簡便運算的思路是:(1)運用運算的性質、定律等。
(2)可能打亂常規的計算順序。
(3)拆數或轉化時,數的大小不能改變。
(4)正確處理好每一步的銜接。
(5)速算也是計算,是將硬算化為巧算。
(6)能提高計算的速度及能力,並能培養嚴謹細致、靈活巧妙的工作習慣。
⑺ 小數點加減乘除怎麼算
(1)小數加減法要相同數位上的數對齊。小數乘法末尾對齊。
(2)小數乘法:先按整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。積的末尾有0要化簡。
(3)小數除以整數:除到哪一位,商就寫在哪一位上,商的小數點和被除數的小數點對齊,商的整數部分不夠商1,個位上就寫0,如果除到被除數的末尾還有餘數,添0再繼續除。小數除以小數,先把除數變成整數,除數的小數點右移幾位,被除數的小數點也向右移動相同的位數,再按除數是整數的小數除法計算。
⑻ 小數加減法的計演算法則是什麼
小數加減法的計演算法則如下:
1、計算小數加、減法,先把各數的小數點對齊。
2、再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
總結:在計算小數加減法時,要將小數點對齊,也就是要將各個數位對齊。
一、整數減法計演算法則:
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
二、整數乘法計演算法則:
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
⑼ 小數的簡便運算方法
小數乘法:運用運算定律可以使一些計算簡便,小數乘法也可以運用整數乘法的運算定律使一些計算簡便運用定律計算,如果能設法使一個因數轉化為整百數或者兩個因數相乘的積為整百數就能使計算簡便。
小數除法:被除數和除數同時擴大相同的倍數,商不變。並指出需要特別注意被除數和除數要同時擴大,而且擴大的倍數相同。)