導航:首頁 > 計算方法 > 計算方法這幾個

計算方法這幾個

發布時間:2022-06-05 09:05:14

① 簡便計算方法哪些

加法交換律:a+b=b+a

加法結合律:a+b+c=a+(b+c)

乘法交換律:a*b=b*a

乘法結合律:a*b*c=a*(b*c)

乘法分配律:a(b+c)=ab+ac

綜合算式(四則運算)應當注意的地方:

1、如果只有加和減或者只有乘和除,從左往右計算,例如:2+1-1=2,先算2+1的得數,2+1的得數再減1。

2、如果一級運算和二級運算,同時有,先算二級運算

3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。

4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。

5、在括弧裡面,也要先算三級,然後到二級、一級。

(1)計算方法這幾個擴展閱讀:

從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。

幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。

② 誰有數學的快速計算方法,或者有什麼竅門!

辦法總比困難多,乘法口訣你自然要背很熟了,否側一切都是浮雲。平時多記記下平方公式,在計算時非常有用的,其他的還是多練練,就到這里吧,下面是個簡單的方法:

1.
十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1

2+4=6

2×4=8

12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21

23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4

4×4=16

7×4=28

37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8

2+4=6

1×1=1

21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5

3+1=4

1+2=3

2+5=7

2
和5分別在首尾

11×23125=254375

註:和滿十要進一。
6.十幾乘任意數:

口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

註:和滿十要進一。

③ 加減乘除法的計算方法是什麼

還有給孩子用的速演算法:
十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28

37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾

11×23125=254375

註:和滿十要進一。
6.十幾乘任意數:

口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18

13×326=4238

註:和滿十要進一。

④ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

⑤ 數學簡便計算,有哪幾種方法

簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。

它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這里其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見復雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括弧。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

⑥ 簡便運算的技巧和方法有哪些

數學簡便計算方法:

一、裂項法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。

常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。

(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。

(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。

(3)分母上幾個因數間的差是一個定值。

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、去尾法

在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。

例題

2356-159-256

=2356-256-159

=2100-159

=1941

算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

⑦ 加減乘除的計算方法

先乘除,後加減,有括弧的先算括弧里的.
整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母

⑧ 古代人的計算方法有(3個)

1、結繩計數

結繩計數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。

如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩組成:每條上有兩個結,再把兩條繩結在一起。

有趣的是,不但我們東方有過結繩,西方也結過繩。看樣子,咱們這個星球早就像個地球村了,只不過那時還沒有電報電話。傳說古波斯王有一次打仗,命令手下兵馬守一座橋,要守60天。

為了讓將士們不少守一天也不多守一天,波斯王用一根長長的皮條,把上面系了60個扣。他對守橋的官兵們說:「我走後你們一天解一個扣,什麼時候解完了,你們就可以回家了。」

2、書契記數

書契記數是指古代記數結繩方法之後出現的記數方法。當時主要用於剩餘糧食數量的記數。書契記數是用刻刀將數刻在獸骨、竹木、龜甲、土石崖上,以便長久保存,不易損壞。

書契記數記事記錄方法一般是在原始社會的後期,漢代徐岳在《數術記遺》一書中,記明書契始於黃帝,有「十等」記法。

3、算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。

需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,同樣經歷了一個漫長的歷史發展過程。

4、珠算

珠算是以算盤為工具進行數字計算的一種方法,被譽為中國的第五大發明。

算盤是中國古代勞動人民發明創造的一種簡便的計算工具。

2008年6月14日,安徽省黃山市屯溪區、中國珠算心算協會申報的珠算經國務院批准列入第二批國家級非物質文化遺產名錄。

2013年12月4日,聯合國教科文組織保護非物質文化遺產政府間委員會第八次會議在亞塞拜然首都巴庫通過決議,正式將中國珠算項目列入教科文組織人類非物質文化遺產名錄。這也是中國第30項被列為非遺的項目。

5、割圓術

3世紀中期,魏晉時期的數學家劉徽首創割圓術,為計算圓周率建立了嚴密的理論和完善的演算法,所謂割圓術,就是不斷倍增圓內接正多邊形的邊數求出圓周率的方法。

⑨ 數學快速計算有哪些方法

乘法口訣你自然要背很熟了,否側一切都是浮雲。平時多記記下平方公式,在計算時非常有用的,其他的還是多練練,就到這里吧,下面是個簡單的方法:

1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1

2+4=6

2×4=8

12×14=168
註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10):
口訣:一個頭加1後,頭乘頭,尾乘尾。
2、例:23×27=?
解:2+1=3
2×3=6
3×7=21

23×27=621
註:個位相乘,不夠兩位數要用0佔位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4

4×4=16

7×4=28

37×44=1628
註:個位相乘,不夠兩位數要用0佔位。
4.幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
4、例:21×41=?
解:2×4=8

2+4=6

1×1=1

21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分別在首尾

11×23125=254375

註:和滿十要進一。
6、十幾乘任意數:

口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

註:和滿十要進一。

⑩ 小學生數學快速計算的幾個方法

1、十幾乘十幾
口訣:十幾+另一數的個位,尾X尾,相加的和加上相乘的積,個位與十位對齊,注意要進位
如:15X16=240
用口訣計算:15+6=21,5X6=30,210+30=240
13X14=182用口訣計算:13+4=17,3X4=12,170+12=182
大家可以試著計算
11X13,12X16,16X17
2、個位與十位互換的兩位數相加
口訣:(個位+十位)X11
如:67+76=143用口訣計算:(6+7)X11=143
93+39=132用口訣計算:(9+3)X11=132
大家可以試著計算
34+43,56+65,78+87
3、個位與十位的兩位數相減
口訣:(被減數十位-被減數個位)X9
如:43-34=9用口訣計算:(4-3)X9=9
95-59=36用口訣計算:(9-5)X9=36
大家可以試著計算76-67,53-35,42-24

閱讀全文

與計算方法這幾個相關的資料

熱點內容
如何不用手指指人的三個方法 瀏覽:48
沉積學研究的基本方法 瀏覽:981
基金凈資產的計算方法在哪裡約定 瀏覽:395
怎麼快速學習數學的方法 瀏覽:256
鑒定母牛發情常用哪些方法 瀏覽:9
學生黨下橫叉的快速方法 瀏覽:504
綠蘿生蟲子怎麼辦最快的方法 瀏覽:514
女性最佳取環方法 瀏覽:363
手機信號最強的方法 瀏覽:802
圖片粘貼排版方法視頻 瀏覽:373
抗疫和防疫的方法和技巧手抄報 瀏覽:75
小學生如何能快速答卷的方法 瀏覽:76
當體溫升高時常用哪些方法降溫 瀏覽:38
車窗拋物方法視頻教程 瀏覽:604
鹽水去頭屑的最佳方法 瀏覽:227
冬季開花花卉怎麼養正確方法圖文 瀏覽:957
如何製作腐植酸的方法 瀏覽:47
體育信息的研究方法 瀏覽:321
口袋最簡單的方法怎麼折呢 瀏覽:20
壓力表的常見問題和解決方法 瀏覽:155