導航:首頁 > 計算方法 > 纜索吊裝方法視頻

纜索吊裝方法視頻

發布時間:2022-06-05 05:48:50

Ⅰ 橋梁有哪些施工方法

懸臂施工法、轉體施工法、頂推施工法、移動模架逐孔施工法、支架現澆法、預制安裝法、橫移施工法、提升與浮運施工等。

前期准備

1、做好橋梁施工前准備工作的重要意義

(1)橋梁施工前的准備工作是堅持按照基本程序、施工程序辦事的重要環節之一。

(2)施工前的准備工作是橋梁施工組織管理工作的主要內容之一。

2、橋梁施工前准備工作的階段劃分

(1)第一階段橋梁工程初步設計已完成,並列入國家或地區建設計劃以後所需進行招標投標及簽訂承包合同等准備工作階段。

(2)第二階段是施工單位承包施工任務以後,在開工之前進行的以圓滿完成各項施工任務為目的的准備工作階段。

注意事項

1.要重視調拱調坡層的施工質量,在該層的施工時,特別要抓好各材料的規格、級配及配合比,確保該層的有效寬度內的平整度和壓實度,是保證基層施工質量的基礎。

2.加強基層養護,在基層施工完成後,採用麻袋進行養護,也可以採用噴灑瀝青乳液保護。若不能封閉交通,應限制重車通行,其車速不應超過20km/h,同時應注意其他交通設施對基層的損壞。若出現車槽(坑槽)鬆散,應採用相同材料修補壓實。嚴禁用鬆散粒料填補。

3.在基層施工中,嚴格抓好松鋪厚度,在最佳含水量的碾壓盡量減少基層成型,經初壓後進行人工整修,特別要加強基層邊緣立模處的壓實度,對因特殊情況碾不到位的應採用工人錘和振動夯,分層夯實,以確保其結構層的質量。

Ⅱ 拱橋的主要施工方法有哪些

按拱圈施工的拱架(支撐方式)可分為支架法、少支架法和無支架法;其中無支架施工包括纜索吊裝、轉體安裝、勁性骨架、懸臂澆築和懸臂安裝以及由以上一種或幾種施工方法的組合。

選用施工方法應根據拱橋的跨度、結構形式、現場施工條件、施工水平等因素,並經方案的技術經濟比較確定合理的施工方法。

中國建造拱橋的歷史要比以造拱橋著稱的古羅馬晚好幾百年,但中國的拱橋卻獨具一格。形式之多,造型之美,世界少有。有駝峰突起的陡拱,有宛如皎月的坦拱,有玉帶浮水的平坦的纖道多孔拱橋,也有長虹卧波、形成自然縱坡的長拱橋。

拱肩上有敞開的(如大拱上加小拱,現稱空腹拱)和不敞開的(現稱實腹拱)。拱形有半圓、多邊形、圓弧、橢圓、拋物線、蛋形、馬蹄形和尖拱形,可說應有盡有。

(2)纜索吊裝方法視頻擴展閱讀:

拱橋是中國最常用的一種橋梁型式,其式樣之多,數量之大,為各種橋型之冠,特別是公路橋梁,據不完全統計,中國的公路橋中7%為拱橋。由於中國是一個多山的國家,石料資源豐富,因此拱橋以石料為主。

建於公元1990年,跨徑120m的湖南烏巢河大橋,是當今世界跨徑第一的石拱橋。中國建造的鋼筋混凝土拱橋的形式更是繁花似錦,式樣之多當屬世界之最,其中建造得比較多的是箱形拱、雙曲拱、肋拱、桁架拱、剛架拱等,它們大多數是上承式橋梁,橋面寬敞,造價低廉。

Ⅲ 橋梁有哪些施工方法

橋梁加固的時目的:1、 確保橋梁工程的安全、完整、適用與耐久。 2 、掌握橋梁結構狀況,完善基礎資料,為加固提供必要條件。 3 、提高原有橋梁的通過能力與承載能力。
橋梁加固應用特點:1、 費用(加固費用為新建費用10~30﹪時優先考慮加固)。 2、 盡量不中斷或少中斷交通。 3 、發現缺陷要一次性加固好不留後患。 4、 原有結構損傷盡可能最低。 5 、技術可靠、耐久使用、養護方便。
橋梁加固主要內容:1、 對舊橋上部結構進行加固。 2、 對舊橋下部結構進行加固。 3 、升高橋樑上部結構的高度。 4、 拓寬橋梁的寬度。 5 、更換行車到或引橋路面結構。 6 、超限車輛過橋時臨時加固。 7 、橋梁抗震加固。 8、 更換損壞的構件。

Ⅳ 採用纜索吊裝施工時,跨徑70m的拱肋一般分為幾段預支吊裝

摘要 您好!很高興為您解答!

Ⅳ 懸索橋主索施工方法

懸索橋主索施工方法是

1、根據結構特點,主纜架設可以採取在便橋或已澆築橋面外側直接展開,用卷揚機配合長臂汽車吊從主梁的側面起吊安裝就位。

2、纜索的支撐方法為避免形成絞,將成圈索放在可以旋轉的支架上。在橋面每4-5m,設置索托輥(或敷設草包等柔性材料),以保證索縱向移動時不會與橋面直接摩擦造成索護套損壞。因錨端重量較大,在牽引過程中採用小車承載索錨端。

3、纜索的牽引,牽引採用卷揚機,為避免牽鋼絲繩過長,索的縱向移動可分段進行,索的移動分三段,分別在二橋塔和索終點共設三台卷揚機。

4、纜索的起吊,在塔的兩側設置導向滑車,卷揚機固定在引橋橋面上主橋索塔附近,卷揚機配合放索器將索在橋面上展開。主要用吊車起吊,提升時避免索與橋塔側面相摩擦。當索提升到塔尖時將索吊入索鞍。在主索安裝時,在橋側配置了3台吊機,即錨固區提升主索塔頂就位吊機和提升倒鏈。

5、拉索錨固端牽引到位時,用錨固區提升吊機安裝主索錨具,並一次錨固到設計位置,吊機起重力在5t以上;主索塔頂就位吊機是在兩座塔的二側安置提升高度大於25m時起重力大於45t的汽車吊,用於將主索直接吊上塔頂索鞍就位;主索在提升到塔頂時,適當的時候用塔上提升倒鏈協助吊裝。

(5)纜索吊裝方法視頻擴展閱讀:

懸索橋的特點

1、相對於其它橋梁結構懸索橋可以使用比較少的物質來跨越比較長的距離。懸索橋可以造得比較高,容許船在下面通過,在造橋時沒有必要在橋中心建立暫時的橋墩,因此懸索橋可以在比較深的或比較急的水流上建造。

2、懸索橋比較靈活,因此它適合大風和地震區的需要,比較穩定的橋在這些地區必須更加堅固和沉重。懸索橋的堅固性不強,在大風情況下交通必須暫時被中斷。懸索橋不宜作為重型鐵路橋梁。

3、懸索橋的塔架對地面施加非常大的力,因此假如地面本身比較軟的話,塔架的地基必須非常大和相當昂貴。懸索橋的懸索銹蝕後不容易更換。

Ⅵ 拱橋有支架施工和無支架施工的方法主要有哪些

拱橋有支架施工和無支架施工的方法主要有:拱橋有支架施工:滿布式拱架法,拱式拱架法,混合式拱架法,支架橫移法剛性骨架法。

支架施工的方法:纜索吊裝法、斜吊式懸臂法,轉體施工法。選用施工方法應根據拱橋的跨度、結構形式、現場施工條件、施工水平等因素,並經方案的技術經濟比較確定合理的施工方法。

拱橋

是在豎直平面內以拱作為結構主要承重構件的橋梁。arch在容器內的粉料層中如果形成能承受上方粉料的壓力而不將此壓力傳遞給下方的面,此面即稱為拱橋。拱橋是向上凸起的曲面,其最大主應力沿拱橋曲面作用,沿拱橋垂直方向的最小主應力為零。在重力作用下進行的粉料流出過程中可能反復出現拱橋的形成和崩解過程,此種拱橋稱為動拱橋。

以上內容參考:網路-拱橋

Ⅶ 求橋梁博士三跨連續梁橋視頻

梁【bridge】指的是為道路跨越天然或人工障礙物而修建的建築物。

橋梁一般講由五大部件和五小部件組成,五大部件是指橋梁承受汽車或其他車輛運輸荷載的橋跨上部結構與下部結構,是橋梁結構安全的保證.包括(1)橋跨結構(或稱橋孔結構.上部結構)、(2)支座系統、(3)橋墩、(4)橋台、(5)墩台基礎.五小部件是指直接與橋梁服務功能有關的部件,過去稱為橋面構造.包括(1)橋面鋪裝、(2)防排水系統、(3)欄桿、(4)伸縮縫、(5)燈光照明.

一、橋梁的分類:

按用途分為公路橋、公鐵兩用橋、人行橋、機耕橋、過水橋。

按跨徑大小和多跨總長分為小橋、中橋、大橋、特大橋。

按結構分為梁式橋,拱橋,鋼架橋,纜索承重橋(斜拉橋和懸索橋)四中基本體系,此外還有組合體系橋

按行車道位置分為上承式橋、中承式橋、下承式橋

按使用年限可分為永久性橋、半永久性橋、臨時橋

按材料類型分為木橋、圬工橋、鋼筋砼橋、預應力橋、鋼橋

橋梁分類 多孔跨徑總長L(米) 單孔跨徑L0(米)

特大橋 L≥500 L0≥100

大橋 L≥100 L0≥40

中橋 30<L<100 20≤L0<40

小橋 8≤L≤30 5<L0<20

涵洞 L<8 L0<5

二、各類橋梁的基本特點:

梁式橋 包括簡支板梁橋,懸臂梁橋,連續梁橋.其中簡支板梁橋跨越能力最小,一般一跨在8-20m.連續梁橋國內最大跨徑在200m以下,國外已達240m.

拱橋 在豎向荷載作用下,兩端支承處產生豎向反力和水平推力,正是水平推力大大減小了跨中彎矩,使跨越能力增大.理論推算,混凝土拱極限跨度在500m左右,鋼拱可達1200m.亦正是這個推力,修建拱橋時需要良好的地質條件.

剛架橋 有T形剛架橋和連續剛構橋,T形剛架橋主要缺點是橋面伸縮縫較多,不利於高速行車.連續剛構主梁連續無縫,行車平順.施工時無體系轉換.跨徑我國最大已達270m(虎門大橋輔航道橋)

纜索承重橋(斜拉橋和懸索橋) 是建造跨度非常大的橋梁最好的設計.道路或鐵路橋面靠鋼纜吊在半空,纜索懸掛在橋塔之間。斜拉橋已建成的主跨可達890m,懸索橋可達1991m.

組合體系橋 有梁拱組合體系,如系桿拱,桁架拱,多跨拱梁結構等.梁剛架組合體系,如T形剛構橋等.

桁梁式橋:有堅固的橫梁,橫梁的每一端都有支撐。最早的橋梁就是根據這種構想建成的。他們不過是橫跨在河流兩岸之間的樹干或石塊。現代的桁梁式橋,通常是以鋼鐵或混凝土製成的長型中空桁架為橫梁。這使橋梁輕而堅固。利用這種方法建造的橋梁叫做箱式梁橋。

懸臂橋:橋身分成長而堅固的數段,類似桁梁式橋,不過每段都在中間而非兩端支承。

拱橋:借拱形的橋身向橋兩端的地面推壓而承受主跨度的應力。現代的拱橋通常採用輕巧、開敞式的結構。

吊橋:是建造跨度非常大的橋梁最好的設計。道路或鐵路橋面靠鋼纜吊在半空,鋼纜牢牢地懸掛在橋塔之間。較古老的吊橋有的使用鐵鏈,有的甚至使用繩索而不是用鋼纜。

拉索橋:有繫到橋柱的鋼纜。鋼纜支撐橋面的重量,並將重量轉移到橋柱上,使橋柱承受巨大的壓力。

玻璃橋:純玻璃製成的一種橋梁。(平板橋)

廊橋:加建亭廊的橋,稱為亭橋或廊橋,可供遊人遮陽避雨,又增加橋的形體變化。

三、中國橋梁的歷史

歷史和現狀上看,絕大多數橋梁均架設在水面上,只有閣道橋和現代城市的行人天橋和行車天橋,是架設於高樓崇閣之間或通衢大道之上。

從對天生橋的利用到人工造橋,這是一個歷史的飛躍過程。從簡單的獨木橋到今天的鋼鐵大橋;從單一的梁橋到浮橋、索橋、拱橋、園林橋、棧道橋、纖道橋等;建橋的材料從以木料為主,到以石料為主,再到以鋼鐵和鋼筋混凝土為主,這是一個非常漫長的發展過程。然而,中國橋梁建築都取得了驚人的成就。

著名的科學技術史學家、英國劍橋大學李約瑟博士( J. Needham )在《中國科學技術史》中說,中國橋梁「在宋代有一個驚人的發展,造了一系列巨大的板梁橋」。到了當代中國,所建造的武漢、南京長江大橋等,更受到世人稱贊。可見,中國的橋梁,經過了一個從童年、少年、青年到壯年的發展過程,愈趨成熟。中國在發展橋梁方面於 14 世紀以前處於領先地位,今天,她依然是世界上舉足輕重的橋梁大國。

四、橋梁的分類:

1.按跨徑分類

橋梁按跨徑分類是一種行業管理的手段,並不反映橋梁工程設計和施工的復雜性。以下是我國公路工程技術標准(JTJ001-97)規定的按跨徑劃分橋梁的方法。

特大橋

橋梁總長L≥500m,計算跨徑L0≥100m。

大橋

橋梁總長100m≤L<500m, 計算跨徑40m≤L0<100m。

中橋

橋梁總長30m<L<100m,計算跨徑20m≤L0<40m。

小橋

橋梁總長8m≤L≤30m,計算跨徑5m≤L0<20m。

橋梁分類 多孔跨徑總長L(m) 單孔跨徑(L0)

特大橋: L≥500m L0≥100m

大橋 :100m≤L<500m 40m≤L0<100m

中橋 :30m<L<100m 20m≤L0<40m

小橋 :8m≤L≤30m 5m≤L0<20m
由於時代的進步,賦予了「橋梁」新的詞義,泛指為機構與機構之間、地區與地區之間、國家與國家之間,溝通有無、建立合作關系、促進友好交流等諸如此類工作的人的統稱。這種人從事的工作和職業也被統稱為「橋梁工作」。

五、橋梁的發展史:

橋梁是道路的組成部分。從工程技術的角度來看,橋梁發展可分為古代、近代和現代三個時期。

(1)古代橋梁

人類在原始時代,跨越水道和峽谷,是利用自然倒下來的樹木,自然形成的石樑或石拱,溪澗突出的石塊,谷岸生長的藤蘿等。人類有目的地伐木為橋或堆石、架石為橋始於何時,已難以考證。據史料記載,中國在周代(公元前11世紀~前256年)已建有梁橋和浮橋,如公元前1134年左右,西周在渭水架有浮橋。古巴比倫王國在公元前1800年建造了多跨的木橋,橋長達183米。古羅馬在公元前621年建造了跨越台伯河的木橋,在公元前 481年架起了跨越赫勒斯旁海峽的浮船橋。古代美索不達米亞地區,在公元前 4世紀時建起挑出石拱橋(拱腹為台階式)。

古代橋梁在17世紀以前,一般是用木、石材料建造的,並按建橋材料把橋分為石橋和木橋。

石橋 石橋的主要形式是石拱橋。據考證,中國早在東漢時期(公元25~220年)就出現石拱橋,如出土的東漢畫像磚,刻有拱橋圖形。現在尚存的趙州橋(又名安濟橋),建於公元605~617年,凈跨徑為37米,首創在主拱圈上加小腹拱的空腹式(敞肩式)拱。中國古代石拱橋拱圈和墩一般都比較薄,比較輕巧,如建於公元816~819年的寶帶橋,全長317米,薄墩扁拱,結構精巧。

羅馬時代,歐洲建造拱橋較多,如公元前200~公元200年間在羅馬台伯河建造了8座石拱橋,其中建於公元前62年的法布里西奧石拱橋,橋有2孔,各孔跨徑為24.4米。公元98年西班牙建造了阿爾橋,高達52米。此外,出現了許多石拱水道橋,如現存於法國的加爾德引水橋,建於公元前1世紀,橋分為3層,最下層為7孔,跨徑為16~24米。羅馬時代拱橋多為半圓拱,跨徑小於25米,墩很寬,約為拱跨的三分之一,圖1[列米尼橋示意圖]為羅馬時代建造的列米尼橋示意圖。

羅馬帝國滅亡後數百年,歐洲橋梁建築進展不大。11世紀以後,尖拱技術由中東和埃及傳到歐洲,歐洲開始出現尖拱橋,如法國在公元1178~1188年建成的阿維尼翁橋,為20孔跨徑達34米尖拱橋。英國在公元1176~1209年建成的泰晤士河橋為19孔跨徑約 7米尖拱橋。西班牙在13世紀建了不少拱橋,如托萊多的聖瑪丁橋。拱橋除圓拱、割圓拱外,還有橢圓拱和坦拱。公元1542~1632年法國建造的皮埃爾橋為七孔不等跨橢圓拱,最大跨徑約32米。當時橢圓拱曾盛行一時。1567~1569在佛羅倫薩的聖特里尼塔建了三跨坦拱橋,其矢高同跨度比為1∶7。11~17世紀建造的橋,有的在橋面兩側設商店,如義大利威尼斯的里亞爾托橋。

石樑橋是石橋的又一形式。中國陝西省西安附近的灞橋原為石樑橋,建於漢代,距今已有2000多年。公元11~12世紀南宋泉州地區先後建造了幾十座較大型石樑橋,其中有洛陽橋、安平橋。安平橋(五里橋)原長2500米,362孔,現長2070米,332孔。英國達特穆爾現存的石板橋,有的已有2000多年。

木橋 早期木橋多為梁橋,如秦代在渭水上建的渭橋,即為多跨梁式橋。木樑橋跨徑不大,伸臂木橋可以加大跨徑,圖2[ 木懸臂橋示意圖]為木懸臂橋的示意圖。中國 3世紀在甘肅安西與新疆吐魯番交界處建有伸臂木橋,「長一百五十步」。公元405~418年在甘肅臨夏附近河寬達40丈處建懸臂木橋,橋高達50丈。八字撐木橋(圖3[ 八字撐木橋示意圖])和拱式撐架木橋亦可以加大跨徑。16世紀義大利的巴薩諾橋為八字撐木橋。

木拱橋(圖4[木拱橋示意圖])出現較早,公元104年在匈牙利多瑙河建成的特拉楊木拱橋,共有21孔,每孔跨徑為36米。中國在河南開封修建的虹橋(圖5[ 虹橋示意圖]),凈跨約為20米,亦為木拱橋,建於公元1032年。日本在岩國錦川河修建的錦帶橋為五孔木拱橋,建於公元300年左右,是中國僧戴曼公獨立禪師幫助修建的。

中國西南地區有用竹篾纜造的竹索橋。著名的竹索橋是四川灌縣珠浦橋,橋為8孔,最大跨徑約60米,總長330餘米,建於宋代以前。

古代橋梁基礎,在羅馬時代開始採用圍堰法施工,即打木板樁成圍堰,抽水後在其中修築橋梁基礎和橋墩。1209年建成的英國泰晤士河拱橋,其基礎就是用圍堰法修築,但是,那時只能用人工打樁和抽水,基礎較淺。中國11世紀初,著名的洛陽橋在橋址江中先遍拋石塊,其上養殖牡蠣二三年後膠固而成筏形基礎,是一個創舉。

(2)近代橋梁

18世紀鐵的生產和鑄造,為橋梁提供了新的建造材料。但鑄鐵抗沖擊性能差,抗拉性能也低,易斷裂,並非良好的造橋材料。19世紀50年代以後,隨著酸性轉爐煉鋼和平爐煉鋼技術的發展,鋼材成為重要的造橋材料。鋼的抗拉強度大,抗沖擊性能好,尤其是19世紀70年代出現鋼板和矩形軋制斷面鋼材,為橋梁的部件在廠內組裝創造了條件,使鋼材應用日益廣泛。

18世紀初,發明了用石灰、粘土、赤鐵礦混合煅燒而成的水泥。19世紀50年代,開始採用在混凝土中放置鋼筋以彌補水泥抗拉性能差的缺點。此後,於19世紀70年代建成了鋼筋混凝土橋。

近代橋梁建造,促進了橋梁科學理論的興起和發展。1857年由聖沃南在前人對拱的理論、靜力學和材料力學研究的基礎上,提出了較完整的梁理論和扭轉理論。這個時期連續梁和懸臂梁的理論也建立起來。橋梁桁架分析(如華倫桁架和豪氏桁架的分析方法)也得到解決。19世紀70年代後經德國人K.庫爾曼、英國人W.J.M.蘭金和J.C.麥克斯韋等人的努力,結構力學獲得很大的發展,能夠對橋梁各構件在荷載作用下發生的應力進行分析。這些理論的發展,推動了桁架、連續梁和懸臂梁的發展。19世紀末,彈性拱理論已較完善,促進了拱橋發展。20世紀20年代土力學的興起,推動了橋梁基礎的理論研究。

近代橋梁按建橋材料劃分,除木橋、石橋外,還有鐵橋、鋼橋、鋼筋混凝土橋。

木橋 16世紀前已有木桁架。1750年在瑞士建成拱和桁架組合的木橋多座,如賴謝瑙橋,跨徑為73米。在18世紀中葉至19世紀中葉,美國建造了不少木橋,如1785年在佛蒙特州貝洛茲福爾斯的康涅狄格河建造的第一座木桁架橋,橋共二跨,各長55米;1812年在費城斯庫爾基爾河建造的拱和桁架組合木橋,跨徑達104米。桁架橋省掉拱和斜撐構,簡化了結構,因而被廣泛應用。由於桁架理論的發展,各種形式桁架木橋相繼出現,如普拉特型、豪氏型、湯氏型等(圖6[ 桁架橋])。由於木結構橋用鐵件量很多,不如全用鐵經濟,因此,19世紀後期木橋逐漸為鋼鐵橋所代替。

鐵橋 包括鑄鐵橋和鍛鐵橋。鑄鐵性脆,宜於受壓,不宜受拉,適宜作拱橋建造材料。世界上第一座鑄鐵橋是英國科爾布魯克代爾廠所造的塞文河橋,建於1779年,為半圓拱,由五片拱肋組成,跨徑30.7米。鍛鐵抗拉性能較鑄鐵好,19世紀中葉跨徑大於60~70米的公路橋都採用鍛鐵鏈吊橋。鐵路因吊橋剛度不足而採用桁橋,如1845~1850年英國建造布列坦尼亞雙線鐵路橋,為箱型鍛鐵梁橋。19世紀中以後,相繼建立起梁的定理和結構分析理論,推動了桁架橋的發展,並出現多種形式的桁梁。但那時對橋梁抗風的認識不足,橋梁一般沒有採取防風措施。1879年12月大風吹倒才建成18個月的陽斯的泰灣鐵路鍛鐵橋,就是由於橋梁沒有設置橫向連續抗風構。

中國於1705年修建了四川大渡河瀘定鐵鏈吊橋。橋長100米,寬2.8米,至今仍在使用。歐洲第一座鐵鏈吊橋是英國的蒂斯河橋,建於1741年,跨徑20米,寬0.63米。1820~1826年,英國在威爾士北部梅奈海峽修建一座中孔長 177米用鍛鐵眼桿的吊橋。這座橋由於缺乏加勁梁或抗風構,於1940年重建。世界上第一座不用鐵鏈而用鐵索建造的吊橋,是瑞士的弗里堡橋,建於1830~1834年、橋的跨徑為 233米。這座橋用2000根鐵絲就地放線,懸在塔上,錨固於深18米的錨碇坑中。

1855年,美國建成尼亞加拉瀑布公路鐵路兩用橋這座橋是採用鍛鐵索和加勁梁的吊橋,跨徑為250米。1869~1883年,美國建成紐約布魯克林吊橋,跨度為283+486+283米。這些橋的建造,提供了用加勁桁來減弱震動的經驗。此後,美國建造的長跨吊橋,均用加勁梁來增大剛度,如1937年建成的舊金山金門橋(主孔長為1280米,邊孔為344米,塔高為228米),以及同年建成的舊金山奧克蘭海灣橋(主孔長為704米,邊孔為354米,塔高為152米),都是採用加勁梁的吊橋。

1940年,美國建成的華盛頓州塔科瑪海峽橋,橋的主跨為853米,邊孔為335米,加勁梁高為2.74米,橋寬為11.9米。這座橋於同年11月7日,在風速僅為 67.5公里/小時的情況下,中孔及邊孔便相繼被風吹垮。這一事件,促使人們研究空氣動力學同橋梁穩定性的關系。

鋼橋 美國密蘇里州聖路易市密西西比河的伊茲橋,建於1867~1874年,是早期建造的公路鐵路兩用無鉸鋼桁拱橋,跨徑為153+158+153米。這座橋架設時採用懸臂安裝的新工藝,拱肋從墩兩側懸出,由墩上臨時木排架的吊索拉住,逐節拼接,最後在跨中將兩半拱連接。基礎用氣壓沉箱下沉33米到岩石層。氣壓沉箱因沒有安全措施,發生119起嚴重沉箱病,14人死亡。19世紀末彈性拱理論已逐步完善,促進了20世紀20~30年代修建較大跨鋼拱橋,較著名的有:紐約的岳門橋,建成於1917年,跨徑305米;紐約貝永橋,建成於1931年,跨徑504米;澳大利亞悉尼港橋(見彩圖[澳大利亞悉尼港橋,是公路、鐵路兩用橋]),建成於1932年,跨徑503米。3座橋均為雙鉸鋼桁拱。

19世紀中期出現了根據力學設計的懸臂梁。英國人根據中國西藏木懸臂橋式,提出錨跨、懸臂和懸跨三部分的組合設想,並於1882~1890年在英國愛丁堡福斯河口建造了鐵路懸臂梁橋。這座橋共有6個懸臂,懸臂長為206米,懸跨長為107米,主跨長為519米(圖7[福斯懸臂梁橋示意圖])。20世紀初期,懸臂梁橋曾風行一時,如1901~1909年美國建造的紐約昆斯堡橋,是一座中間錨跨為190米、懸臂為 150和180米、無懸跨、由鉸聯結懸臂、主跨為300米和360米的懸臂梁橋。1900~1917年建造的加拿大魁北克橋也是懸臂鋼橋。1933年建成的丹麥小海峽橋為五孔懸臂梁公路鐵路兩用橋,跨徑為137.50+165+200+165+137.5米。

1896年比利時工程師菲倫代爾發明了空腹桁架橋。比利時曾經造了幾座鉚接和電焊的空腹桁架橋。

鋼筋混凝土橋 1875~1877年,法國園藝家莫尼埃建造了一座人行鋼筋混凝土橋,跨徑16米,寬4米。1890年,德國不萊梅工業展覽會上展出了一座跨徑40米的人行鋼筋混凝土拱橋。1898年,修建了沙泰爾羅鋼筋混凝土拱橋。這座橋是三鉸拱,跨徑52米。圖8[ ]為三鉸拱、橋示意圖。1905年,瑞士建成塔瓦納薩橋,跨徑51米,是一座箱形三鉸拱橋,矢高5.5米。1928年,英國在貝里克的羅亞爾特威德建成 4孔鋼筋混凝土拱橋,最大跨徑為110米。1934年,瑞典建成跨徑為181米、矢高為26.2米的特拉貝里拱橋;1943年又建成跨徑為264米、矢高近40米的桑德拱橋(圖9[瑞典桑德拱橋示意圖])。

橋梁基礎施工,在18世紀開始應用井筒,英國在修威斯敏斯特拱橋時,木沉井浮運到橋址後,先用石料裝載將其下沉,而後修基礎及墩。1851年,英國在肯特郡的羅切斯特處修建梅德韋橋時,首次採用壓縮空氣沉箱。1855~1859年,在康沃爾郡的薩爾塔什修建羅亞爾艾伯特橋時,採用直徑11米的鍛鐵筒,在筒下設壓縮空氣沉箱。1867年,美國建造伊茲河橋,也用壓縮空氣沉箱修建基礎。壓縮空氣沉箱法施工,工人在壓縮空氣條件下工作,若工作時間長,或從壓縮氣箱中未經減壓室驟然出來,或減壓過快,易引起沉箱病。

1845年以後,蒸汽打樁機開始用於橋梁基礎施工。

(3)現代橋梁

20世紀30年代,預應力混凝土和高強度鋼材相繼出現,材料塑性理論和極限理論的研究,橋梁振動的研究和空氣動力學的研究,以及土力學的研究等獲得了重大進展。從而,為節約橋梁建築材料,減輕橋重,預計基礎下沉深度和確定其承載力提供了科學的依據。現代橋梁按建橋材料可分為預應力鋼筋混凝土橋、鋼筋混凝土橋和鋼橋。

預應力鋼筋混凝土橋 1928年,法國弗雷西內工程師經過20年的研究,用高強鋼絲和混凝土製成預應力鋼筋混凝土。這種材料,克服了鋼筋混凝土易產生裂紋的缺點,使橋梁可以用懸臂安裝法、頂推法施工。隨著高強鋼絲和高強混凝土的不斷發展,預應力鋼筋混凝土橋的結構不斷改進,跨度不斷提高。

預應力鋼筋混凝土橋有簡支梁橋、連續梁橋、懸臂梁橋、拱橋、桁架橋、剛架橋、斜拉橋等橋型。簡支梁橋的跨徑多在50米以下。連續梁橋如1966年建成的法國奧萊隆橋,是一座預應力混凝土連續梁高架橋,共有26孔,每孔跨徑為79米。1982年建成的美國休斯敦船槽橋,是一座中跨229米的預應力混凝土連續梁高架橋,用平衡懸臂法施工。懸臂梁橋如1964年聯邦德國在柯布倫茨建成的本多夫橋,其主跨為209米;1976年建成的日本濱名橋,主跨240米;中國1980年完工的重慶長江橋,主跨174米(見彩圖[重慶長江橋,是公路預應力混凝土 T型剛構橋])。桁架橋如1960年建成的聯邦德國芒法爾河谷橋,跨徑為 90+108+90米,是世界上第一座預應力混凝土桁架橋。1966年蘇聯建成一座預應力混凝土桁架式連續橋,跨徑為106+3×166+106米,用浮運法施工剛架橋如1957年建成的法國圖盧茲的聖米歇爾橋,是一座160米、5~65米的預應力混凝土剛架橋;1974年建成的法國博諾姆橋,主跨徑為186.25米,是目前最大跨徑預應力混凝土剛架橋(圖10[博諾姆橋示意圖])。預應力鋼筋混凝土吊橋是將預應力梁中的預應力鋼絲索作為懸索,並同加勁梁構成自錨式體系,1963年建成的比利時根特的梅勒爾貝克橋和瑪麗亞凱克橋,主跨徑分別為 56米和100米,就是預應力鋼筋混凝土吊橋。斜拉橋如1962年建成委內瑞拉的馬拉開波湖橋。這座橋為5孔235米連續梁,由懸在 A形塔的預應力斜拉索將懸臂梁吊起。斜拉橋的梁是懸在索形成的多彈性支承上,能減少梁高,且能提高橋的抗風和抗扭轉震動性能,並可利用拉索安裝主梁,有利於跨越大河,因而應用廣泛。預應力混凝土斜拉橋如1971年利比亞建造的瓦迪庫夫橋,主跨徑282米;1978年美國建造的華盛頓州哥倫比亞河帕斯科-肯納威克橋,主跨299米;1977年法國建造的塞納河布羅東納橋,主跨320米。中國已建成十多座預應力混凝土斜拉橋,其中1982年建成的山東濟南黃河橋主跨為220米(見彩圖[濟南黃河公路橋,是連續預應力混凝土斜拉橋,於1982年建成通][車])。

鋼筋混凝土橋 二次世界大戰以後,世界上修建了多座較大跨徑的鋼筋混凝土拱橋,如1963年通車的葡萄牙亞拉達拱橋,跨徑為270米,矢高50米;1964年完工的澳大利亞悉尼港的格萊茲維爾橋,跨徑305米。

中國1964年創造鋼筋混凝土雙曲拱橋。橋由拱肋和拱波組成,縱向和橫向均有曲度,橫向也用拱波形式(圖11[雙曲拱結構示意圖])。拱肋和拱波分段預制,因此可用輕型吊裝設施安裝。這樣,在缺乏重型運輸工具和重型吊裝機具下,也可以修建較大跨徑拱橋。第一座試驗雙曲拱橋,建於中國江蘇無錫,跨徑為9米。此後,1972年建成湖南長沙湘江大橋,是一座16孔雙曲拱橋,大孔跨徑為60米,小孔跨徑為50米,總長1250米。

鋼筋混凝土桁架拱橋(圖12[桁架拱橋示意圖])是拱和桁架組合而成的結構,其用料少,重量輕,施工簡易。

鋼橋 二次世界大戰後,隨著強度高、韌性好、抗疲勞和耐腐蝕性能好的鋼材的出現,以及用焊接平鋼板和用角鋼、板鋼材等加勁所形成輕而高強的正交異性板橋面的出現,高強度螺栓的應用等,鋼橋有很大發展。

鋼板梁和箱形鋼梁同混凝土相結合的橋型,以及把正交異性板橋面同箱形鋼梁相結合的橋型,在大、中跨徑的橋樑上廣泛運用。1951年聯邦德國建成的杜塞爾多夫至諾伊斯橋,是一座正交異性板橋面箱形梁,跨徑206米。1957年聯邦德國建成的杜塞爾多夫北橋,是座6孔72米鋼板梁結交梁橋。1957年南斯拉夫建成的貝爾格萊德的薩瓦河橋,是一座鋼板梁橋,跨徑為75+261+75米,為倒U形梁。1973年法國建成的馬蒂格斜腿剛架橋,主跨為300米。1972年義大利建成的斯法拉沙橋,跨徑達376米,是目前世界上跨徑最大的鋼斜腿剛架橋。1966年美國完工的俄勒岡州阿斯托里亞橋,是一座連續鋼桁架橋,跨徑達376米。1966年日本建成的大門橋,是一座連續鋼桁架橋,跨徑達300米。1968年中國建成的南京長江橋,是一座公路鐵路兩用的連續鋼桁架橋,正橋為128+9×160+128米,全橋長6公里(見彩圖[南京長江橋,是中國目前規模最大的橋梁])。1972年日本建成的大阪港的港大橋為懸臂梁鋼橋,橋長980米,由235米錨孔和162米懸臂、186米懸孔所組成1964年美國建成的紐約維拉扎諾吊橋,主孔1298米,吊塔高210米。1966年英國建成的塞文吊橋,主孔985米。這座橋根據風洞試驗,首次採用梭形正交異性板箱形加勁梁,梁高只有3.05米。1980年英國完工的恆比爾吊橋,主跨為1410米,也用梭形正交異性板箱形加勁梁,梁高只有3米。

20世紀60年代以後,鋼斜拉橋發展起來。第一座鋼斜拉橋是瑞典建成的斯特倫松德海峽橋,建於1956年,跨徑為 74.7+182.6+74.7米。這座橋的斜拉索在塔左右各兩根,由鋼筋混凝土板和焊接鋼板梁組合作為縱梁1959年聯邦德國建成的科隆鋼斜拉橋,主跨為334米;1971年英國建成的厄斯金鋼斜拉橋,主跨305米;1975年法國建成的聖納澤爾橋,主跨404米。這座橋的拉索採用密束布置,使節間長度減少,梁高減低,梁高僅3.38米。目前通過對鋼斜拉橋抗風抗震性能的改進,其跨徑正在逐漸增大。

鋼橋的基礎多用大直徑樁或薄壁井筒建造。

Ⅷ 軌索運梁法和纜索吊機法的區別

咨詢記錄 · 回答於2021-12-10

閱讀全文

與纜索吊裝方法視頻相關的資料

熱點內容
怎麼快速學習數學的方法 瀏覽:256
鑒定母牛發情常用哪些方法 瀏覽:9
學生黨下橫叉的快速方法 瀏覽:504
綠蘿生蟲子怎麼辦最快的方法 瀏覽:514
女性最佳取環方法 瀏覽:363
手機信號最強的方法 瀏覽:802
圖片粘貼排版方法視頻 瀏覽:373
抗疫和防疫的方法和技巧手抄報 瀏覽:75
小學生如何能快速答卷的方法 瀏覽:76
當體溫升高時常用哪些方法降溫 瀏覽:38
車窗拋物方法視頻教程 瀏覽:604
鹽水去頭屑的最佳方法 瀏覽:227
冬季開花花卉怎麼養正確方法圖文 瀏覽:957
如何製作腐植酸的方法 瀏覽:47
體育信息的研究方法 瀏覽:320
口袋最簡單的方法怎麼折呢 瀏覽:18
壓力表的常見問題和解決方法 瀏覽:153
腎上腺素的釋放水平檢測方法 瀏覽:281
儀表總耗氣量的計算方法有哪些 瀏覽:923
每天百分比計算方法 瀏覽:178