A. 超聲波測試的原理圖
超聲波在傳播的過程中遇到不同介質的物體有不同強度的反射,利用這個原理用超聲波進行檢測混合的物體有不同的反射並利用成像技術表達被測體的特徵,醫院用來進行檢查的超聲波就是採用這個用來對進行病人體內器官的檢查,這種超聲波技術是最高等級的利用。在工業上也採用超聲波對被控對象進行檢測,比如物料,水位,計件等等,這些相對成像要簡單一些,但在使用中不可有其他物體阻礙超聲波的路徑,否則會造成檢測誤差或失靈。超聲波檢測是由超聲波發射器發射定向的超聲波,同時檢測器接收超聲波的回波,利用不同強度的回波來進行判別、成像。和雷達技術相似,只是一個是電磁波,一個是聲波。
B. 超聲波檢測技術的原理
超聲波是一種頻率高於人耳能聽到的頻率(20Hz~20KHz)的聲波。實踐證明,頻率愈高,檢測解析度愈高,則檢測精度愈高。因此實踐中利用超聲波檢測水泥路面狀態時,其上限頻率為100KHz、下限頻率為20KHz。
超聲波是一種波,因此它在傳輸過程中服從波的傳輸規律。例如:超聲波在材料中保持直線行進;在兩種不同材料的界面處發生反射;傳播速度服從波的傳輸定理:ν=λf(ν為波速,λ為波長,f為波的頻率)。資料證明,波速對於水泥路面路基檢測十分有用,因此一般也稱超聲波檢測法為波速法。
C. 超聲波基本原理的基本原理
超聲波是聲波的一部分,是人耳聽不見、頻率高於20KHZ的聲波,它和聲波有共同之處,即都是由物質振動而產生的,並且只能在介質中傳播;同時,它也廣泛地存在於自然界,許多動物都能發射和接收超聲波,其中以蝙蝠最為突出,它能利用微弱的超聲回波在黑暗中飛行並捕捉食物。但超聲還有它的特殊性質'如具有較高的頻率與較短的波長,所以,它也與波長很短的光波有相似之處。 超聲波是彈性機械振動波,它與可聽聲相比還有一些特點:傳播的方向較強,可聚集成定向狹小的線束;在傳播介質質點振動的加速度非常之大;在液體介質中當超聲強度達到一定值後便會發生空化現象。
一、束射特性
從聲源發出的聲波向某一方向(其他方向甚弱)定向地傳播,稱之為束射。 超聲波由於它的波長較短,當它通過小孔(大於波長的孔)時,會呈現出集中的一束射線向一定方向前進。又由於超聲方向性強,所以可定向採集信息。同樣當超聲波傳播的方向上有一障礙 物的直徑大於波長時,便會在障礙物後產生「聲影」。這些猶如光線通過小孔和障礙物一樣,所以超聲波具有和光波相似的束射特性。
超聲波的束射性的好壞,一般用發散角的大小來衡量(習慣上
用半發射角臼表示)。以平面圓形活塞式聲源為例,其大小決定
於聲源的宜徑(D)和聲波的波長(λ)。由此看出,要使發聲體發射出方向性有較好的超聲波,必須使θ角盡量小,發射體(聲源)的直痙D必須很大或發射的頻率f也必須很高才能得到,否則將適得其反。由於超聲波的波長要比可聽聲的波長短,所以它就比可聽聲波有較好的束射特性,頻率愈高的超聲波,波長愈短,這種向一定方向傳播的特性就愈顯著。 超聲波在各種介質傳播時,隨著傳播距離的增加,超聲強度會漸漸減弱,能量逐漸消耗,這種能量被介質吸收掉的特性,稱之為聲吸收。1845年斯托克斯(Stoke。G.G.)發現:當聲波通過液體,因液體質點相對運動而產生的內摩擦(即粘滯作用)導致聲吸收,因而導出了由介質的內摩擦或粘性引起的液體中聲吸收公式。還有,當聲波在液體介質中傳播時,壓縮區的溫度將高於平均溫度;相反,稀疏區的溫度低於平均溫度,因此,由於熱傳導使聲波的壓縮和稀疏部分之間進行熱交換,從而引起聲波能量的減少1868年基爾霍夫(Kirchhoff G.)導出了由熱傳導引起的聲吸收公式。
由此看出,吸收系數a與聲波頻率的平方成正比,當頻率增加10倍,則吸收系數就增大100倍。即頻率愈高,吸收愈大,因而聲波傳播的距離愈小。在氣體中,1920年愛因斯坦提出了由聲頻散來確定締合氣體的反應率,從而促進了對氣體分子熱弛豫吸收機制延伸到液體的研究,得出了由於介質中的分子相互之間的碰撞引起分子熱弛豫吸收。所以低頻聲波在空氣中可以傳播很遠距離,而高頻聲波在空氣中很快的衰減了。
在固體中,聲吸收在很大程度上取決於固體的實際結構。
由以上看出引起不同介質對聲吸收的原因很多,但主要原因是介質的粘滯性、熱傳導、介質的實際結構及介質的微觀動力學過程中引起的弛豫效應等,這些介質中的聲吸收都隨著聲的頻率而變化。超聲波是高頻率的聲波,在同一介質中傳播時,隨著頻率的增大,被介質吸收的能量就愈大。例如頻率為105Hz的超聲波在空氣中被吸收的能量比頻率為104Hz的聲波大100倍;對同一頻率的超聲波因傳播的介質不同。如在氣體、液體、固體中傳播時,其吸收分別為最厲害、較弱、最小。所以超聲波在空氣中傳播距離最短。
超聲波在均勻介質中傳播時,由於介質的吸收,而影響聲強度隨距離的增加而減弱,這就是聲波衰減。
當超聲波起始強度為J0,經過x米距離後,其強度為
Jx= Joe-2ax「 』
式中a為吸收系數(衰減系數)。
由上可得在各種介質中聲波的吸收系數,
由此看出超聲強度是以指數而衰減的。例如頻率為106Hz的超聲波在離開聲源以後,在空氣中經過0. 5m距離,其強度就要減弱一半;在水中傳播,要經過500m的距離後才使強度減弱一半,
可看出在水中傳播的距離相當於在空氣中傳播距離的1000倍。隨著頻率的增高,衰減越快。如頻率為1011Hz的超聲在空氣中傳播,當在離開聲源的一剎那間就會全部消失得無影無蹤。在粘度很大的液體中,超聲被吸收得更快。例如在200C時,使頻率為300kHz的超聲的強度減至一半,只需0.4m厚的空氣就夠了,至
於在水中就要經過440m,在變壓器油中就要傳播100m左右,而在石蠟中只需傳播3m左右。因此,粒度極大的物質(橡皮、膠木、瀝青)則是超聲波良好的絕緣體。 超聲波傳播的能量比可聽聲大得多。因為當聲波到達某一物質時,由於聲波的作用使物質中的分子也跟著振動,振動的頻率和聲波頻率一樣,所以分子振動頻率決定了分子振動的速度,頻率越高速度越大。從而物質的分子由振動而獲得了能量,其能量除了與分子的質量有關外,還與分子的振動速度的平方成正比,而振動速度又與分子振動的頻率有關,所以聲波的頻率越高,也就是物質分子得到的能量越高。超聲波的頻率比聲波的頻率可高得多,所以超聲波可使物質分子獲得更大的能量。由此說明超聲波本身可
以供給物質足夠大的能量。
我們平常人耳能聽到的聲波頻率低、能量小。如高聲談話聲約等於50uW/cm2的強度。但超聲波所具有的能量就比聲波大得多。例如頻率為106Hz的超聲振動所具有的能量,比振幅相同而頻卒為103Hz的聲波振動的能量要大100萬倍,因為聲波的能量與頻率的平方成正比。由此看出,主要是超聲波的巨大機械能量
使物質質點產生了極大的加速度。
在一般工作中,正常響度的揚聲器的聲強為2·10-9W/cm2;炮的射擊聲的聲強為10 - 3W/cm2;中等響度的聲音使水的質點所獲得的加速度只有重力加速度(980cm/s2)的百分之幾,所以不會對水產生影響。然而如果把超聲作用於水中,使水質點所達到的加速度可能比重力加速度大幾十萬倍甚至幾百萬倍,所以就會使
水質點產生急速運動。它在超聲提取中有著極其重要的作用。 空化現象是液體中常見的一種物理現象。在液體中由於渦流或超聲波等物理作用,致使液體的某些地方形成局部的負壓區,從而引起液體或液體一固體界面的斷裂,形成微小的空泡或氣泡。液體中產生的這些空泡或氣泡處於非穩定狀態,有初生、發育、隨後迅速閉合的過程,當它們迅速閉合破滅時,會產生一種微激波,使局部區域有很大的壓強。這種空泡或氣泡在液體中形成和隨後迅速閉合的現象,稱為空化現象。
關於空化基本過程以及空化與沸騰的區別簡述如下:當液體在恆壓下加熱或在恆溫下用靜力或動力方法減壓時,可達到茌液體中有蒸氣空泡或充滿氣體的空泡(或空穴)開始出現並發育,隨後又閉合。這一狀態若由溫度升高所引起,稱之為「沸騰」;若溫度基本不變而由局部壓力下降所引起,稱之為「空化」。
由以上空化基本過程看出空化有以下特徵:空化是一種液體中出現的現象,在任何正常環境下,固體或氣體都不會發生空化;空化是液體減壓的結果,因此大體上可由控制減壓程度來控制空化現象;空化是一種動力學現象,它涉及空泡的發育與閉合。
超聲空化是強超聲在液體中傳播時,引起的一種特有的物理現象,也是引起液體中空腔的產生、長大、壓縮、閉合、反跳快速重復性運動的特有的物理過程。在空泡崩潰閉合時產生局部高壓、高溫,由於聲場中的頻率、聲強和液體的表面張力、粘度以及周圍環境的溫度和壓力等影響,液體中的微小氣核在聲場的作用下響應可能是緩和的,也可能是強烈的。故人們將聲空化分為穩態和瞬態兩種空化類型。
穩態空化主要是指那些內含氣體和蒸氣的空化泡的動力學行為,是一種較長壽命的氣泡振動。這種空化過程一般在小於1W/cm2聲強時產生,空化氣泡振動時間長,且持續幾個聲波周期。在聲場中這種振動氣泡,由於在膨脹時氣泡的表面積比壓縮時大,使膨脹時擴散到泡內的氣體比壓縮時擴散到泡外的多,而使氣泡在振動過程中增大。當振動振幅足夠大時,會使氣泡由穩態轉變為瞬態空化,繼而發生崩潰。
瞬態空化一般指在大於1W/cm2的聲強時所產生的空化氣泡,振動只在一個聲周期內完成。這種在聲場中振動的氣泡,當聲強足夠高、聲壓為負半周時,液體受到大的拉力,氣泡核迅速脹大,可達到原來尺寸的數倍;繼而在聲壓正半周時,氣泡受到壓縮因突然崩潰而裂解成許多小氣泡,以構成新的空化核。在氣泡迅速收縮時,泡內的氣體或蒸氣被壓縮,而在空化泡崩潰的極短時間,泡內產生約5000K的高溫,類似太陽表面的溫度;局部產生約500大氣壓的高壓,相當於深海底的壓力;溫度變化率高達109K/s;並伴隨產生強烈的沖擊波和時速達400km的射流、發光現象,也可聽到小的爆裂聲。可見空化所提供的能量,使局部產生高壓、高溫、高梯度流動,為葯材中難以提取的成分提供了一種新的提取途徑。
對超聲空化的研究,始於20世紀30年代,在Monnesco和Frenzel等發現聲發光(SL)後,由追索發光起因引起的對超聲空化氣泡運動的研究及對其基本效應的測量。他們採用對液體中超聲空化群體氣泡進行測量,研究丁「多泡空化」;到20世紀60年代中國科學院汪承灝、張德俊等在應崇福院士指導下,研究了用動力式方法產生的單一空化氣泡的完整運動過程,並實驗證明了空化的光輻射和電磁輻射均發生於氣泡閉合時刻,他們還研究了空化的
乳化作用及機械效應。20世紀80年代美國Gaitan和Crum等人採用聲懸浮技術將單一氣泡「囚禁」在容器的駐波場波腹處,使之與外加超聲場同步產生周期性的空化過程,並進行了測量。這些成果都為超聲在工農業、醫學等方面的應用提供了理論基礎,也為超聲空化的測量提供了條件。
空化強度的測量
根據目前的報導,超聲空化強度還沒有一種絕對的測定方法,但超聲在實際中的應用效果在某些方面是與空化強度有著直接關系,所以想方設法測量空化強度在實際應用中有著重要的意義。而空化強度不但和空化泡閉合時所產生的壓力大小、單位體積中的空化泡數量有關,還與各種類型的空化泡有關,所以只能測量相對強度。目前主要是從超聲清洗的角度研究,以直接衡量超聲清洗的效果,其方法有:
腐蝕法:將厚度約20um的鋁、錫或鉛箔置於聲場中一定距離上受空化腐蝕,在一定的時間內取出,稱出腐蝕樣的重量,以衡量相對的空化強度,這種方法稱之為膺蝕法。這種方法可測量由液體表面到不同深度的相對空化強度。測量的方法是要求金屬樣品表面光潔度一致,進行多次測量,以求出平均值。
化學法:將碘化鈉置於四氯化碳中,在聲空化作用下以釋放出碘的多少,來衡量相對的空化強度,這種方法稱為化學法。這種方法是用分光光度計或者放射性示蹤方法作釋放碘的定量測定。因為在超聲強度5 -30 W/cm2,處理1 min,碘的釋放量隨聲強的增加而增加,故以釋放量的大小,測定其空化強度。
清除污物法:用帶有放射性污物的工件作為清洗樣品,用超聲清洗後,定量測量污物除去的數量,以此衡量超聲清洗的效果或相對的空化強度,這種方法稱之為清除污物法。在實際應用中還有測量空化雜訊的方法等,在此不多述了。
超聲空化的消極作用及應用
由於聲空化現象產生氣泡的非線性振動以及它們破滅時產生爆破壓力,所以伴隨空化現象能產生許多物理和化學效應。這些效應有消極方面的作用,但也有在工程技術中得到應用的方面。如艦船用的高速旋轉的螺旋槳槳葉的表面,常受到空化產生的壓力打擊作用,「腐蝕」成一些斑痕。空化嚴重時,大量氣泡的出現會影響螺旋槳的推力。在民用工業中,空化「腐蝕」會損壞管道和器件。然而,利用空化產生的激波打擊作用,或氣泡閉合的局部高溫可以在工業中得到有益的利用。如超聲清洗,就是利用聲波復雜構造異形的孔道,藉助超聲空化能對放在洗滌劑中的機件微型機件清洗;也可在鍋爐中進行超聲除垢和防水垢沉積;還可利用空化對葯劑生產過程進行乳化,在工業上制備油一水之類混合溶液的乳劑;進行超聲焊接(破壞金屬表面氧化層,促金屬焊接);利用超聲空化促進某些化學反應過程;打破植物細壁,促進化學成分向溶劑中溶解,提高化學成分提出率等應用。
一、 超聲原理概述超聲波清洗的原理是發生器產的高頻振盪電信號。通過換能器轉換成高頻的機械振動,傳播到清洗液中,對工件實施高效的清洗。其工作機理是運用空化作用成倍或十幾售地提高清洗效果。當把液體放入清洗機內,施加超聲波後,由於超聲波在清洗液中是一種疏密相間,輻射傳播的高頻波,從而使液體高速往復振動。在振動的負壓區由於周圍的液體來不及補充,形成無數的微小真空氣泡,而在正壓區,微小氣泡在壓力下突然閉合,在閉合過程中由於液體間相互碰撞產生強大的沖擊波形成最高可達幾千個大氣壓的瞬時高壓,作用在被清洗的工件上。吸附在工件上的油膩、雜質在連續不斷的瞬時高壓作用下迅速脫離工件。從而達到清潔的目的。 超聲波的兩個主要參數 超聲波的兩個主要參數: 頻率:F≥20KHz; 功率密度:p=發射功率(W)/發射面積(cm2);通常p≥0.3w/cm2; 在液體中傳播的超聲波能對物體表面的污物進行清洗,其原理可用「空化」現象來解釋:超聲波振動在液體中傳播的音波壓強達到一個大氣壓時,其功率密度為0.35w/cm2,這時超聲波的音波壓強峰值就可達到真空或負壓,但實際上無負壓存在,因此在液體中產生一個很大的壓力,將液體分子拉裂成空洞一空化核。此空洞非常接近真空,它在超聲波壓強反向達到最大時破裂,由於破裂而產生的強烈沖擊將物體表面的污物撞擊下來。這種由無數細小的空化氣泡破裂而產生的沖擊波現象稱為「空化」現象。 太小的聲強無法產生空化效應。 超聲波清洗機由三個主要部分組成: (1)裝載清洗液的不銹鋼清洗缸 (2)超聲波發生器(3)超聲波換能器 超聲波清洗機具有清潔度高,機器噪音小、設備壽命長等優點。並能對幾何形狀比較復雜,例如有各種盲孔、微孔、深孔等用其他清洗方法難以清洗的零件進行高效清洗。由於具有以上獨特的性能,所以越來越被人們認識和接受。二、 設備特點當超聲波清洗機注滿水接通電源後,電路把50赫茲的交流電轉換成超聲波頻率的交流電、產生振盪,這種振盪的形成就是通過電感及換能器電容組成諧振電路,並將振盪信號通過反饋持繼不斷地進行下去。經晶體管進行放大後再送給串聯諧振電路。這個諧振頻率在機器出廠前精確地調整在換能器固有諧振頻率上,以發揮換能器最佳效果。 換能器是通過螺柱和強力粘合劑粘結在不銹鋼清洗槽底面上的,換能器將超聲波機械能通過槽底傳施給槽內液體,然後作用於液體中的被清洗工件,從而實現了超聲波清洗的功能。 大功率晶體管是工作在開關飽和工作狀態,所以其輸出波形為方形。當方波進入諧振電路後,經電感和電容的濾波後,就成為正弦波,所以實際上作用在換能器上的電流波形,已成為正弦波。 超聲波清洗機的超聲波電源發生器有兩種,一種是自激電路,另一種是他激電路。自激電路結構簡單、實用、經濟性好;他激電路功率大,具有頻率跟蹤和限流,發熱等多種保護,兩種電路分別適合不同層次企業和更廣泛的客戶需要。三、 使用方法1. 將發生器與清洗槽連接電纜接好。2. 將槽內注入選用的清洗液。3. 將發生器接入220V±10% 50赫茲交流電源。4. 打開發生器電源開關,電源指示燈亮(此時槽內液體開始振動空化)。四、 注意事項1. 為了延長使用壽命,建議將設備放在通風、乾燥的區域,發生器後側的風扇孔應定期清潔。發生器四面留有通風口,以使氣流暢通無阻。2. (1)清洗槽必須放入液體後才能開機工作,最低水位高度>100mm(底振式)且水平放置,換能器在側面時,為清洗槽槽沿100mm處,如在空氣狀態開機會損壞機器。(2)當清洗缸體溫度為常溫時,切勿將高溫液體直接注入缸內,以免導致換能器松動而影響機器正常使用 。(3)當清洗液因污染而需要更換時,切勿將低溫液體直接注入高溫缸體內,這同樣可導致換能器脫落,同時應當關閉加熱器開關,以免加熱器因槽內無液體而損壞。(4)定期檢查換能器,切勿使其變潮及撞擊,以免造成不必要的損失。3. 使用完畢後,應關閉總電源。4. 關機後不要立刻重新開機,間隙時間應在1分鍾以上。
D. 超聲波的原理及應用
從客觀上講,超聲和可聽聲,除頻率范圍不同外,並沒有差異.但超聲由於頻率高,便具有一些特點,尤其重要的是,這些特點可加以利用,這正是人們所以研究超聲規律的原因.
超聲的特點之一很簡單,就是聽不見.前面提到,聲音來源於部件的振動.振動除產生聲波外,還可以產生其它作用,其中一些作用將在下面介紹.如果我們激發振動的目的是這些其它作用,那麼通常我們不想同時產生聽得見的聲音,因為這些聲音這時是雜訊.在這種情況下,可以激發20000Hz以上的振動,既能完成一些其它功能,又不伴生干擾.
超聲的第二個特點是波長小.任何一種波動(聲波、電磁波、等離子波等等)都有一些共同的基本參數,其中之一是傳播速度,另一個就是波長.聲波是機械波,或說是力學波.媒質中有聲波傳播時,原來是靜止的媒質質點會以原佔位置為中心作很微小(例如也許只幾十納米)的振動,每個質點在振動若干次後將恢復靜止.但這種振動的狀態,由於媒質的彈性,會傳給緊鄰的質點,依次向下傳遞,可能傳得很遠,在海洋中甚至可傳到1000km以外.這種傳遞的速度就是聲波的傳播速度.
確定.對於單一頻率的正弦或餘弦波,波長是波峰與波峰之間或波谷與波谷之間的空間距離.
超聲頻率高,因此波長小.這有兩點重要後果.一點是不必用尺寸很大的聲源,即振動源,就可以產生指向性比較尖銳的聲波.定性地說,指向性描述聲源所發射聲束的狹窄程度,狹窄的象手電筒所發射的光,寬廣的或說彌散的可象電燈泡所發射的光.在許多聲波應用中,我們需要前者而不需要後者.可以證明,如果要產生前者,聲源的尺寸應當比聲波的波長大幾倍.1MHz的聲波在水中的波長約為1.4mm,而1000Hz的聲波在水中的波長約為1.4m,製作和搬運一個直徑幾毫米的聲源顯然比製作和搬運一個直徑幾米的聲源省事得多.
由於同樣的原理,不僅容易實現狹窄的聲束,還容易實現聲束聚焦,象人們通常聚焦光那樣.在焦點或焦區,聲強可以很高,從而產生一些強烈的作用.
超聲波長小的第二點重要後果是,超聲可以被微小的障礙物散射開來.平面聲波在傳播過程中遇到有限大小的障礙物時會被障礙物所散射,就是說,入射波不再沿原方向傳播,而是向四周散開,包括散到與入射方向相反的方向.所謂障礙物是指材料的聲學參量ρc不同於基質ρ0c的物體,ρ是密度(因此基質內的空穴也是障礙物.).沿各個方向散開的聲波幅度分布,或說散射圖案,因障礙物的尺寸與波長之比而異.可以想見,當ρc差別不大時,如果聲波波長遠大於障礙物的尺寸,聲波幾乎會忽略障礙物的存在,反之則聲波幾乎象碰上一個界面,而被反射和折射.如果聲波波長接近於障礙物的尺寸,聲波的散開程度會較大.在某些聲波應用中我們倒希望聲波被散開,從而可以通過測量散射圖案,判斷不透明媒質中有沒有障礙物以及是怎樣的形狀、大小、內含物的障礙物.假若障礙物很大,我們可以採用頻率低、波長長的聲波,若障礙物很小,我們就需用頻率高、波長短的超聲.
超聲的第三個特點是與物質有相互作用.聲波的某些物理的、化學的、生物的效應,或籠統地說,聲波與物質的相互作用,只有在高頻率范圍才會發生.例如有多種類的所謂「弛豫效應」,分別只在不同的高頻率范圍才能出現.又例如,超聲在液體中有一個很突出的物理效應,叫「空化效應」.超聲會在液體中產生空穴或氣泡,這些氣泡處於非穩定狀態,在適當條件下會迅速崩潰,從而在氣泡內產生幾千度的高溫,在氣泡周圍產生近千大氣壓的激波.高溫和強激波的出現則可以導致聲致發光、水中聲致自由基、機械作用(如粉碎、乳化等等)、化學反應活性加強、高分子解聚等效應.
超聲的一個特點是容易形成細聲束,以及可以被相當小的障礙物所散射,其中包括背(逆)向散射.將這束細聲束向正前方射出,同時使它上下左右擺動,便可以搜索前方有沒有障礙物.用電子學的手段,容易測量反射波或背散射波回轉的時間,在已知聲速的情況下,可以確定前方障礙物的位置.當障礙物足夠大時,從回波隨聲束移動的分布,可以顯示出障礙物的形狀;對比較小的障礙物,人們正在尋求判斷障礙物的大小、形狀、內含物等特徵的方法.對於不均勻的透明材料,我們常用光學的辦法檢測;對於不透明材料,用普通的光學方法是做不到的.而包括超聲的聲波則能夠透入任何媒質,不論這媒質是氣體、液體、還是固體,也不論透不透光,對不同媒質的差別只是透入深淺不同.利用超聲來檢查或顯示媒質中是否存在障礙物,以及障礙物有哪些特徵,叫做超聲檢測.
E. 超聲波的原理是什麼啊
1超聲波簡介
我們把頻率高於20KHz的聲波稱為超聲波,超聲波具有良好的方向性和穿透能力,特別是在水中,傳播距離更遠。無論是在軍事上、農業上還是在生活中都有廣泛的應用,可以用來測速度、測距離、消毒殺菌、清洗、焊接等。
人耳能聽到的超聲波頻率范圍大概是20Hz-20KHz,超聲波的頻率大於人類聽覺上限,因此叫做「超聲波」。
超聲波與普通聲波一樣,也具有反射、折射、衍射、散射等特點,但是超聲波的波長較短,有的是幾厘米,低至千分之幾毫米。波長越短,聲波的衍射特性就越差,可以在介質中穩定地進行直線傳播,因此波長較短的超聲波具有很強的直線傳播能力。眾所周知,聲音在空氣中傳播時,會推動空氣中的粒子振動做功,而聲波功率的大小表示聲波做功快慢,在相同環境下,聲波的頻率越高功率就越大。超聲波的頻率大於20KHz,因此超聲波的功率較高。
超聲波主要有兩個參數:
頻率:F≥20000Hz(通常把F≥15000Hz的聲波也稱為超聲波);
功率密度:p=發射功率(W)/發射面積(cm2);通常p≥0.3w/cm。
超聲波具有如下特性:
(1)超聲波具有在氣體、液體、固體等介質中進行效傳播的能力。
(2)超聲波具有很強的傳遞能量的能力。
(3)超聲波具有反射特性,還會產生干涉、疊加和共振現象。
(4)超聲波在液體介質中傳播時,可在界面上產生空化現象和強烈的沖擊。
超聲波的特性及工作原理
2超聲波用途
超聲波在生活中的很多方面都有應用,主要有以下幾個方面:
1)醫學方面
在醫學方面,超聲波主要應用為醫學診斷與臨床治療。醫學診斷中,超聲波的主要應用為B超。由於超聲波具有反射、折射等特點,如果將超聲波發射到人體內,它就會在人體內部發生反射,人體內部各個形狀大小都不一樣,因此反射回來的聲波方向、強度等信息也不同,醫生通過對反射回來的聲波進行分析,再結合一些醫學方面的專業知識,就可以知道人體內部的某些部位是否產生病變。
在臨床治療中,超聲波主要被用來殺死腫瘤細胞和超聲針灸,我們知道超聲波的功率很大,利用醫學影像技術,將多束超聲波聚焦在病變的細胞上,控制好照射的強度和時間,短時間的溫度將達到70~100℃,在保護周圍組織的同時殺死了病變細胞。
超聲針灸就是利用超聲波技術來刺激穴位,這種療法對組織沒有損傷,而且具有無痛、無不適應等優點,在治療小孩子或者一些害怕針灸的患者時有很好的效果。此外,超聲波在體外碎石,理療、牙科等方面也經常使用。
2)超聲清洗
超聲清洗主要基於空化作用,空化作用總體上就是在有壓力和無壓力作用時,每一秒都進行著幾萬次這樣的變換,超聲波在液體內部不斷地進行透射作用,在沒有壓力作用時,液體內部就會出現真空核泡群,在有壓力作用時,真空核泡群在壓力的作用下產生強大的沖擊力,因此可以帶走物體表面的污垢,完成清洗工作。一些表面凹凸不平的器件,或者特別小難以清洗的部件,例如鍾表、電子元器件、電路板等都可以達到很好的清洗效果。而且隨著超聲波頻率的升高,空化作用的效果會減弱,因此超聲波清理的效果很好卻不會傷害到器件表面。
3)超聲測距
由於超聲波的波長相對較短,具有良好的方向性和穿透能力,能量消耗的比較慢,在介質中傳播距離較遠。而且超聲測距的原理簡單,比其他的測距方式都方便容易操作,計算也比較簡便,測量精度也能滿足要求,因此在一些移動式機器人或者導盲系統中有廣泛的應用。
F. 超聲波詳細的工作原理
超聲波工作原理:超聲波清洗原理是由超聲波發生器發出的高頻振盪信號,通過換能器轉換成高頻機械振盪而傳播到介質,清洗溶劑中超聲波在清洗液中疏密相間的向前輻射,使液體流動而產生數以萬計的微小氣泡,存在於液體中的微小氣泡在聲場的作用下振動,當聲壓達到一定值時,氣泡迅速增大,然後突然閉合,在氣泡閉合時產生沖擊波,在其周圍產生上千個大氣壓,破壞不溶性污物而使他們分散於清洗液中,當團體粒子被油污裹著而黏附在
清洗件表面是,油被乳化,固體粒子及脫離,從而達到清洗件凈化的目的,且通過其空化作用達到洗盲腳的作用。超聲波的危害:超聲波在生物體內傳播時,通過組織間的相互作用,導致生物體機能和結構變化,稱為超聲波的生物效應,產生生物效應的機制是熱效應和空化效應。
所謂的熱效應是指超聲波傳播過程中,部分能量被生物組織吸收轉變為熱能,使組織溫度增高;空化效應是指超聲波傳播過程中與組織中的氣核或微氣泡相互作用,使其突然爆破,產生巨大的瞬間壓力,使組織內部結構改變。
低劑量超聲是潛在的致癌與致畸形因素,而且不同頻率、不同聲強對不同個體有一定危害。因為超聲波對固體和液體都有很強的穿透本領,能量較大時可以使物質微粒作高頻振動,部分能量還可以轉變為熱能,使局部溫度升高。高強度的脈沖超聲波在含有微米級小氣泡的液體中傳播時,可導致氣泡收縮、膨脹以至猛烈爆炸,這種現象稱為「空化現象」。不久前美國著名超生物物理專家卡斯坦森指出,某些臨床使用的超聲圖像診斷儀的最大輸出強度已達1千瓦/平方厘米,這個強度足以使生物體產生瞬態空化現象。對生物體來說,瞬態空化作用時,靠近爆炸氣泡附近的細胞會受到損傷,一般說來,在人體內大多數器官和生物流體中,損傷少量細胞不會對人體產生危害。超聲波對人體危害的原理:超聲波對人體危害的原理是,超聲波在生物體內傳播時,通過組織間的相互作用,導致生物體機能和結構變化,稱為超聲波的生物效應,產生生物效應的機制是熱效應和空化效應。
所謂的熱效應是指超聲波傳播過程中,部分能量被生物組織吸收轉變為熱能,使組織溫度增高;空化效應是指超聲波傳播過程中與組織中的氣核或微氣泡相互作用,使其突然爆破,產生巨大的瞬間壓力,使組織內部結構改變。
G. 超聲檢測原理是什麼
超聲檢測(Ultrasonic Testing),業內人士簡稱UT,是工業無損檢測(Nondestructive Testing)中應用最廣泛、使用頻率最高且發展較快的一種無損檢測技術,可以用於產品製造中質量控制、原材料檢驗、改進工藝等多個方面,同時也是設備維護中不可或缺的手段之一。
2 超聲檢測主要的應用是檢測工件內部宏觀缺陷和材料厚度測量。按照不同特徵,可將超聲檢測分為多種不同的方法:
2.1 按原理分類:超聲波脈沖反射法、衍射時差法(Time of Flight Diffraction,簡稱TOFD)等。
2.2 按顯示方式分類:A型顯示、超聲成像顯示(B、C、D、P掃描成像、雙控陣成像等)。A型顯示的超聲波脈沖反射法是五大常規無損檢測技術之一,其他四種是:射線檢測(Radiographic Testing):射線照相法、磁粉檢測(Magnetic Particle Testing)、滲透檢測(Penetrant Testing)、渦流檢測(Eddy Current Testing)。
3 超聲檢測原理,本質上是利用超聲波與物質的相互作用:反射、折射和衍射。
3.1 什麼是超聲波?我們把能引起聽覺的機械波稱為聲波,頻率在20-20000Hz之間,而頻率高於20000Hz的機械波稱為超聲波,人類是聽不到超聲波的。對於鋼等金屬材料的檢測,我們常用頻率為0.5~10MHz的超聲波。(1MHz=10的六次方Hz)
3.2 如何發出和接收超聲波?超聲檢測用探頭的核心元件是壓電晶片,其具有壓電效應:在交變拉壓應力的作用下,晶體可以產生交變電場。當高頻電脈沖激勵壓電晶片時,發生逆壓電效應,將電能轉換成聲能(機械能),探頭以脈沖的方式間歇發射超聲波,即脈沖波。當探頭接受超聲波時,發生正壓電效應,將聲能轉換成電能。
3.3超聲檢測所用的常規探頭,一般由壓電晶片、阻尼塊、接頭、電纜線、保護膜和外殼組成,一般分為直探頭和斜探頭兩個類別,後者的話通常還有一個使晶片與入射面成一定角度的斜鍥塊。
H. 超聲波檢測的原理
超聲波檢測是利用材料及其缺陷的聲學性能差異對超聲波傳播波形反射情況和穿透時間的能量變化來檢驗材料內部缺陷的無損檢測方法。
脈沖反射法在垂直探傷時用縱波,在斜射探傷時用橫波。脈沖反射法有縱波探傷和橫波探傷。在超聲波儀器示波屏上,以橫坐標代表聲波的傳播時間,以縱坐標表示回波信號幅度。
對於同一均勻介質,脈沖波的傳播時間與聲程成正比。因此可由缺陷回波信號的出現判斷缺陷的存在;又可由回波信號出現的位置來確定缺陷距探測面的距離,實現缺陷定位;通過回波幅度來判斷缺陷的當量大小 。
(8)超聲波測核的原理與方法步驟擴展閱讀:
超聲波檢測優點:
1、適用於金屬、非金屬和復合材料等多種製件的無損檢測
2、缺陷定位較准確
3、對面積型缺陷的檢出率較高
4、靈敏度高,可檢測試件內部尺寸很小的缺陷
5、對人體及環境無害
6、不破壞樣品
參考資料來源:網路-超聲波檢測
I. 超聲波原理
超聲波是聲波的一部分,是人耳聽不見、頻率高於20KHZ的聲波,它和聲波有共同之處,即都是由物質振動而產生的,並且只能在介質中傳播。許多動物都能發射和接收超聲波,其中以蝙蝠最為突出,它能利用微弱的超聲回波在黑暗中飛行並捕捉食物。
超聲波是一種在彈性介質中的機械振盪,有兩種形式:橫向振盪及縱向振盪。在工業中應用主要採用縱向振盪。超聲波可以在氣體、液體及固體中傳播,其傳播速度不同。另外,它也有折射和反射現象,並且在傳播過程中有衰減。
(9)超聲波測核的原理與方法步驟擴展閱讀:
在空氣中傳播超聲波,其頻率較低,一般為幾十KHZ,而在固體、液體中則頻率可用得較高。在空氣中衰減較快,而在液體及固體中傳播,衰減較小,傳播較遠。利用超聲波的特性,可做成各種超聲感測器,配上不同的電路,製成各種超聲測量儀器及裝置,並在通訊,醫療家電等各方面得到廣泛應用。
J. 超聲波檢測的基本原理是什麼
超聲波方向性好,穿透能力強,能夠傳遞信息,易於獲得較集中的聲能,在水中傳播距離遠。