導航:首頁 > 安裝方法 > park檢驗方法步驟

park檢驗方法步驟

發布時間:2022-04-13 15:09:56

A. 異方差定義

異方差 heteroscedasticity

相對於同方差而言的。所謂同方差,是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函數中的隨機誤差項滿足同方差性,即它們都有相同的方差。如果這一假定不滿足,即:隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。

異方差一般可歸結為三種類型:

檢驗存在的方法

B. 檢驗異方差性的方法有哪些

關於異方差性檢驗的方法大致有:圖示檢驗法、Goldfeld - Quandt 檢驗法、White檢驗法、Park檢驗法和Gleiser檢驗法。事實也證明,實際經濟問題中經常會出現異方差性,這將影響回顧模型的估計、檢驗和應用。因此在建立計量經濟模型時應檢驗模型是否存在異方差性。

異方差性是相對於同方差而言的。所謂同方差,是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函數中的隨機誤差項滿足同方差性,即它們都有相同的方差隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。

(2)park檢驗方法步驟擴展閱讀

測量誤差對異方差性的作用主要表現在兩個方面:一方面,測量誤差常常在一定時間內逐漸積累,誤差趨於增加,如解釋變數X越大,測量誤差就會趨於增大;另一方面,測量誤差可能隨時間變化而變化,如抽樣技術或收集資料方法的改進就會使測量誤差減少。

不僅在時間序列上容易出現異方差性,利用平均數作為樣本數據也容易出現異方差性。收入較高和較低的人是少數的,大部分人的收入居於較高和較低之間,在以不同收入組的人均數據作為樣本時,由於每組中的人數不同,觀測誤差也不同。

C. Park(帕克)檢驗檢驗異方差可以檢驗是哪個解釋變數引起的嗎

可以。說明異方差比較明顯,它與GDPS變數之間的關系是統計顯著的,可以以帕克檢驗的方程為基礎,做加權變換,消除異方差。

D. 檢驗異方差有哪些方法

異方差檢驗主要有三種方法
1 Park-Gleiser檢驗
2 Goldfeld-Quandt 檢驗(缺點,只能處理單升和單降型的異方差)
3 White 檢驗
最著名最常用的是第三種懷特檢驗。核心原理是判斷ui由xi解釋程度的高低,越高越有異方差。
具體的方法這里不好打,你可以查一下相關資料。
希望幫到你

E. 什麼是park法雙眼皮,比普通切開雙眼皮貴嗎,做出的形狀是什麼樣的,能給我詳細的介紹一下嗎

您好,無論手術設計的如何巧妙,手術操作的技巧,包括縫合技巧,對傷口癒合和最終效果方面都是一個重要的因素。某些縫合技巧會使縫合更便利。park縫合技術就是其中的一種。知美認為通常情況下,專項針對性眼部整形的技術,會依據個人五官特點,進行個體化手術設計,採用微創小切口技術,在上瞼設計並實施Park法重瞼成形術,會達到滿意的效果。Park法重瞼成形術,術中祛除多餘脂肪,拉緊眼瞼皮膚,術後形成完美的重瞼形態,使睫毛上翹明顯,極富立體感。手術線更細,縫合層次也更為精細,損傷極小,恢復更快,手術真正做到微創不留痕跡,效果精緻細膩,平滑流暢,眼睛明顯變大有神。 適合人群: 1、單眼皮,或一眼單,一眼雙,或兩側雙眼皮寬窄不一者。 2、內雙眼皮者,即雖是雙眼皮,但睜時開時也很不明顯或完全消失。 3、上瞼皮膚松馳下垂,壓迫睫毛,或擋住部分視野者。 4、眼外形欠美觀者如八字眼、大小眼等,可通過手術得到改善。
一定要根據個人情況來做。認真考慮。

F. 檢驗異方差性的方法有哪些

檢驗異方差性的方法有:
1)圖示檢驗法。①相關圖分析。②殘差圖分析。
2)Goldfeld - Quandt 檢驗法。
3)懷特(white) 檢驗。
4)帕克檢驗( Park test ) 和格里奇檢驗( Glejser test)。

G. 舉例說明什麼是異方差性

異方差性(heteroscedasticity )是相對於同方差而言的。所謂同方差,是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函數中的隨機誤差項滿足同方差性,即它們都有相同的方差。如果這一假定不滿足,即:隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。
若線性回歸模型存在異方差性,則用傳統的最小二乘法估計模型,得到的參數估計量不是有效估計量,甚至也不是漸近有效的估計量;此時也無法對模型參數的進行有關顯著性檢驗。
對存在異方差性的模型可以採用加權最小二乘法進行估計。
異方差性的檢測——White test
在此檢測中,原假設為:回歸方程的隨機誤差滿足同方差性。對立假設為:回歸方程的隨機誤差滿足異方差性。判斷原則為:如果nR^2>chi^2 (k-1),則原假設就要被否定,即回歸方程滿足異方差性。
在以上的判斷式中,n代表樣本數量,k代表參數數量,k-1代表自由度。chi^2值可由查表所得。
2含義
編輯

回歸模型的隨機擾動項ui在不同的觀測值中的方差不等於一個常數,Var(ui)= 常數(i=1,2,…,n),或者Var(u ) Var(u )(i j),這時我們就稱隨機擾動項ui具有異方差性(Heteroskedasticity)。
在實際經濟問題中,隨機擾動項ui往往是異方差的,但主要在截面數據分析中出現。
例如
(1)調查不同規模公司的利潤,發現大公司的利潤波動幅度比小公司的利潤波動幅度大;
(2)分析家庭支出時發現高收入家庭支出變化比低收入家庭支出變化大。
在分析家庭支出模型時,我們會發現高收入家庭通常比低收入家庭對某些商品支出有更大的方差;圖5-1顯示了一元線性回歸中隨機變數的方差ui隨著解釋變數 的增加而變化的情況。
異方差性破壞了古典模型的基本假定,如果我們直接應用最小二乘法估計回歸模型,將得不到准確、有效的結果。
來源

1.模型中缺少某些解釋變數,從而隨機擾動項產生系統模式
由於隨機擾動項ui包含了所有無法用解釋變數表示的各種因素對被解釋變數的影響,即模型中略去的經濟變數對被解釋變數的影響。如果其中被略去的某一因素或某些因素隨著解釋變數觀測值的不同而對被解釋變數產生不同的影響,就會使ui產生異方差性。
例如,以某一時間截面上不同收入家庭的數據為樣本,研究家庭對某一消費品(如服裝、食品等)的需求,設其模型為:
(5-1)
其中Qi表示對某一消費品的需求量,Ii為家庭收入,ui為隨機擾動項。ui包括除家庭收入外其他因素對Qi的影響。如:消費習慣、偏好、季節、氣候等因素,ui的方差就表示這些因素的影響可能使得Qi偏離均值的程度。在氣候異常時,高收入家庭就會拿出較多的錢來購買衣服,而低收入的家庭購買衣服的支出就很有限,這時對於不同的收入水平Ii,Qi偏離均值的程度是不同的,Var(ui) 常數,於是就存在異方差性了。
再比如,以某一時間截面上不同地區的數據為樣本,研究某行業的產出隨投入要素的變化而變化的關系,建立如下模型:
(5-2)
其中Yi表示某行業的產出水平。Li表示勞動力對產出的影響。Ki表示資本對產出的影響,ui表示除勞動力和資本外其他因素對產出水平的影響,諸如地理位置、國家政策等。顯然,對於不同的行業 ,這些因素對產出 的影響程度是不 同的,引起 偏離零均值的程度也是不同的,這就出現了異方差。
異方差性容易出現在截面數據中,這是因為在截面數據中通常涉及某一確定時點上的總體單位。比如個別的消費者及其家庭、不同行業或者農村、城鎮等區域的劃分,這些單位各自有不同的規模或水平,一般情況下用截面數據作樣本時出現異方差性的可能性較大。
2.測量誤差
測量誤差對異方差性的作用主要表現在兩個方面:一方面,測量誤差常常在一定時間內逐漸積累,誤差趨於增加,如解釋變數X越大,測量誤差就會趨於增大;另一方面,測量誤差可能隨時間變化而變化,如抽樣技術或收集資料方法的改進就會使測量誤差減少。所以測量誤差引起的異方差性一般都存在於時間序列中。
例如,研究某人在一定時期內學習打字時打字差錯數Yt與練習打字時間Xt之間的關系。顯然在打字練習中隨時間的增加,打字差錯數將減少,即隨著Xt的增加Yt將減小。這時Var(ut)將隨Xt的增加而減少,於是存在異方差性。
不僅在時間序列上容易出現異方差性,利用平均數作為樣本數據也容易出現異方差性。因為許多經濟變數之間的關系都服從正態分布,例如不同收入組的人數隨收入的增加是正態分布,即收入較高和較低的人是少數的,大部分人的收入居於較高和較低之間,在以不同收入組的人均數據作為樣本時,由於每組中的人數不同,觀測誤差也不同,一般來說,人數多的收入組的人均數據較人數少的收入組的人均數據具有較高的准確性,即Var(ui)隨收入Ii呈現先降後升的趨勢,這也存在著異方差性。
3.模型函數形式設置不正確
模型函數形式的設定誤差。如將指數曲線模型誤設成了線性模型,則誤差有增大的趨勢。
4.異常值的出現
隨機因素的影響,如政策變動、自然災害、金融危機、戰爭和季節等。
類型

異方差一般可歸結為三種類型:
(1)單調遞增型:隨X的增大而增大,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動越來越大
(2)單調遞減型:隨X的增大而減小,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動越來越小
(3)復雜型:與X的變化呈復雜形式,即在X與Y的散點圖中,表現為隨著X值的增大Y值的波動復雜多變沒有系統關系。
檢驗存在的方法
事實也證明,實際經濟問題中經常會出現異方差性,這將影響回顧模型的估計、檢驗和應用。因此在建立計量經濟模型時應檢驗模型是否存在異方差性。關於異方差性檢驗的方法大致如下:圖示檢驗法、Goldfeld - Quandt 檢驗法、White檢驗法、Park檢驗法和Gleiser檢驗法。
1)圖示檢驗法。①相關圖分析。方差為隨機變數的離散程度,通過觀察y和x的相關圖,可以觀察的離散程度和解釋變數之間的相關關系。若隨x的增加,y的離散程度呈逐漸增加或減少的趨勢則表明模型存在著遞增或者遞減的異方差性。②殘差圖分析。通過對模型殘差分布的觀察,如果分布的離散程度有明顯擴大的趨勢,則表明存在異方差性。圖示檢驗法只能較簡單粗略判斷模型是否存在著異方差性。
2)Goldfeld - Quandt 檢驗法。將解釋變數排序,分成兩個部分利用樣本1 和樣本2 分別建立回歸模型,並求出各自殘差平方 和,若誤差項的離散程度相同,則 和 的值大致相同,若兩者之間存在顯著差異,則表明存在差異性。為在檢驗過程中「誇大」差異性,在樣本中去掉c 個樣本數據(c= n/4),則構造F統計量
對於給定顯著水平,若,則表明模型存在異方差性,反之,則不存在。
3)懷特(white) 檢驗。White 檢驗是通過建立輔助回歸模型的方法來判斷異方差性。假設回歸模型為二元線性回歸模型 則White 檢驗的步驟為:估計回歸模型,計算殘差;估計輔助回歸模型:即將殘差平方關於解釋變數的一次項,二次項和交叉乘積項進行回歸;計算輔助回歸模型的判斷系數,可以證明在同方差的假定下( ) ,其中q 為輔助回歸模型中自變數的個數:給定顯著水平,若 ,則認為至少有一個不為0( ),存在異方差性。
4)帕克檢驗( Park test ) 和格里瑟檢驗( Glesgertest)。通過建立殘差序列對解釋變數的輔助回歸模型,判斷隨機項的誤差和解釋變數之間是否有較強的相關關系,以此來判斷模型是否存在異方差性。
Park檢驗:或 ;
Gleiser檢驗:h=±1,±2,±1/2,……,其中 是隨機誤差項,給定顯著水平,若
經檢驗其中的某個輔助回歸方程是顯著的,則證明原模型存在異方差性。帕克檢驗和格里瑟檢驗可以判斷模型是否存在異方差,而且可以探究模型異方差性的具體形式,這為後來解決異方差性打下基礎
後果

在古典回歸模型的假定下,普通最小二乘估計量是線性、無偏、有效估計量,即在所有無偏估量中,最小二乘估計量具有最小方差性——它是有效估計量。如果在其他假定不變的條件下,允許隨機擾動項ui存在異方差性,即ui的方差隨觀測值的變化而變化,這就違背了最小二乘法估計的高斯——馬爾柯夫假設,這時如果繼續使用最小二乘法對參數進行估計,就會產生以下後果:
1.參數估計量仍然是線性無偏的,但不是有效的
2.異方差模型中的方差不再具有最小方差性
3.t檢驗失去作用
4.模型的預測作用遭到破壞

H. 異方差產生的經濟背景消除和減弱開方差性的常用方法有哪些

摘要 圖示檢驗(使用Y-X散點圖,或者e^2~X散點圖進行判斷,如果呈現一條水平線則是不存在異方差,否則,可能存在),這種方法的問題是:判斷並不準確,是否算是水平線還是復雜性的異方差無法判斷

閱讀全文

與park檢驗方法步驟相關的資料

熱點內容
馬原中歸納的方法有什麼局限性 瀏覽:508
燈具遙控安裝方法 瀏覽:984
在家地震預警有哪些方法論 瀏覽:398
氣缸圓柱度的檢測方法 瀏覽:214
東風制動燈故障原因和解決方法 瀏覽:309
簡諧運動研究方法 瀏覽:123
幼兒異物吸入的搶救方法有哪些 瀏覽:210
開衫毛衣尺寸的經典計算方法 瀏覽:356
廣電有線連接方法 瀏覽:826
局解血管的檢查常用方法 瀏覽:987
瑜伽的技巧和方法 瀏覽:833
寫出五種植物的傳播方法 瀏覽:97
治療脾氣差的最佳方法 瀏覽:814
花卉滿天星的種植方法 瀏覽:966
風控未通檢測方法 瀏覽:767
根管治療術的步驟和方法 瀏覽:180
去腳臭的簡單的方法 瀏覽:934
二年級語文教學方法和教學手段 瀏覽:68
學前教育研究方法課題 瀏覽:866
瑜伽胳膊鍛煉方法 瀏覽:124