導航:首頁 > 安裝方法 > 基坐標系測量方法

基坐標系測量方法

發布時間:2022-04-11 20:26:32

『壹』 測量坐標系有哪幾種

一共有8種,具體如下:

按格式分:空間坐標系(XYZ),大地坐標系(BLH),平面坐標系(xyh)。主要是數學方面的坐標系,用來解決空間問題以及維度的問題。

按實施年代分:1954北京坐標系,1980西安坐標系,2000國家大地坐標系。主要用於工程建設、施工的CAD圖紙的確認房屋的坐標、方向。

按區或功能分:有國家標准坐標系,有地方獨立坐標系。主要用於地理圖紙的製作、研究和計算。也常用於地理方向的教學。

(1)基坐標系測量方法擴展閱讀:

坐標系的應用

把圖形看成點的運動軌跡,這個想法很重要!它從指導思想上,改變了傳統的幾何方法。笛卡爾根據自己的這個想法,在《幾何學》中,最早為運動著的點建立坐標,開創了幾何和代數掛鉤的解析幾何。在解析幾何中,動點的坐標就成了變數,這是數學第一次引進變數。

恩格斯高度評價笛卡爾的工作,他說:「數學中的轉折點是笛卡爾的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學。」

坐標方法在日常生活中用得很多。例如象棋、國際象棋中棋子的定位;電影院、劇院、體育館的看台、火車車廂的座位及高層建築的房間編號等都用到坐標的概念。

隨著同學們知識的不斷增加,坐標方法的應用會更加廣泛。

數控

數控機床的加工是由程序控制完成的,所以坐標系的確定與使用非常重要。根據ISO841標准,數控機床坐標系用右手笛卡兒坐標系作為標准確定。數控車床平行於主軸方向即縱向為Z軸,垂直於主軸方向即橫向為X軸,刀具遠離工件方向為正向。

數控車床有三個坐標系即機械坐標系、編程坐標系和工件坐標系。

機械坐標系的原點是生產廠家在製造機床時的固定坐標系原點,也稱機械零點。它是在機床裝配、調試時已經確定下來的,是機床加工的基準點。

在使用中機械坐標系是由參考點來確定的,機床系統啟動後,進行返回參考點操作,機械坐標系就建立了。坐標系一經建立,只要不切斷電源,坐標系就不會變化。

編程坐標系是編程序時使用的坐標系,一般把我們把Z軸與工件軸線重合,X軸放在工件端面上。工件坐標系是機床進行加工時使用的坐標系,它應該與編程坐標系一致。能否讓編程坐標系與工坐標系一致,是操作的關鍵。

在使用中我們發現,FANUC系統與航天數控系統的機械坐標系確定基本相同,都是在系統啟動後回參考點確定。 工件坐標系

工件坐標系( Workpiece Coordinate System )固定於工件上的笛卡爾坐標系,是編程人員在編製程序時用來確定刀具和程序起點的,該坐標系的原點可使用人員根據具體情況確定,但坐標軸的方向應與機床坐標系一致並且與之有確定的尺寸關系。

『貳』 極坐標測量法的極坐標測量法

引一條射線Ox,叫做極軸,再選定一個長度單位和角度的正方向(通常取逆時針方向)。對於平面內任何一點M,用ρ表示線段OM的長度,θ表示從Ox到OM的角度,ρ叫做點M的極徑,θ叫做點M的極角,有序數對 (ρ,θ)就叫點M的極坐標,這樣建立的坐標系叫做極坐標系。用極坐標系所進行的測量方法稱做極坐標測量法。

『叄』 我國使用的測量坐標系有哪些

我國使用的測量坐標系有以下四種:
1、北京54坐標系
2、西安80坐標系:該坐標系的大地原點設在我國中部的陝西省涇陽縣永樂鎮,位於西安市西北方向約60公里。
3、2000國家大地坐標系:簡稱為CGS2000,即China Geodetic System 2000。Z軸指向BIH1984.0定義的協議極地方向(BIH國際時間局),X軸指向BIH1984.0定義的零子午面與協議赤道的交點,Y軸按右手坐標系確定。
4、1985國家高程標准:我國於1956年規定以黃海(青島)的多年平均海平面作為統一基面,叫"1956年黃海高程系統",為中國第一個國家高程系統。

拓展資料

地面測量坐標系通常是指空間大地坐標基準下的高斯-克呂格6帶或3%帶(或任意帶)投影的平面直角坐標(例如1954年北京坐標系或1980西安大地坐標系)與定義的從某一基準面量起的高程(例如1956 年黃海高程或1985 年國家基準高程),兩者組合而成的空間左手直角坐標系。

地面測量坐標系通常是指空間大地坐標基準下的高斯-克呂格6帶或3%帶(或任意帶)投影的平面直角坐標(例如1954年北京坐標系或1980西安大地坐標系)與定義的從某一基準面量起的高程(例如1956 年黃海高程或1985 年國家基準高程),兩者組合而成的空間左手直角坐標系。用T-X,Y,Z,表示。攝影測量方法求得的地面點坐標最後要以此坐標形式提供給用戶。

『肆』 如何進行坐標測量

1 利用手持GPS測量幾個當地的控制點求取wgs84與1954年北京坐標系轉換參數
2 根據已知坐標和轉換參數利用手持機找到兩端的控制點
3 採用全站儀按無定向閉合導線方式在兩端的控制點之間測出若干個導線點

4 利用這些導線點就可以放樣出直線上的任意點了。

『伍』 測量中極坐標詳細計算方法

(5)基坐標系測量方法擴展閱讀

極坐標系的意義

(1)用於定位和導航。極坐標通常被用於導航,作為旅行的目的地或方向可以作為從所考慮的物體的距離和角度。例如,飛機使用極坐標的一個略加修改的版本進行導航。

這個系統中是一般的用於導航任何種類中的一個系統,在0°射線一般被稱為航向360,並且角度是以順時針方向繼續,而不是逆時針方向,如同在數學系統那樣。

航向360對應地磁北極,而航向90,180,和270分別對應於磁東,南,西。因此,一架飛機向正東方向上航行5海里將是在航向90(空中交通管制讀作090)上航行5個單位。

(2)有些幾何軌跡問題如果用極坐標法處理,它的方程比用直角坐標法來得簡單,描圖也較方便。1694年,J.貝努利利用極坐標引進了雙紐線,這曲線在18世紀起了相當大的作用。

(3)建模有徑向對稱的系統提供了極坐標系的自然設置,中心點充當了極點。這種用法的一個典型例子是在適用於徑向對稱的水井時候的地下水流方程。有徑向力的系統也適合使用極坐標系。這些系統包括了服從平方反比定律的引力場,以及有點源的系統,如無線電天線。



『陸』 全站儀坐標測量方法

1全站儀

在公路工程中,全站儀得到了普遍的應用,全站儀最主要的功

能是數據採集和坐標放樣,數據採集是已知某點在地面上的樁位,要用全站儀測其坐標;而坐標放樣正好和數據採集是個相反的過程,它是已知某點的坐標,要用全站儀將其在地面上的樁位定出來。

要進行數據採集和坐標放樣,首先得讓全站儀找到坐標北方向,那麼全站儀是怎麼找到北方向的呢?在地面上得先知道兩個已知點A、B的坐標和樁位,假設將儀器架在A點上,將架儀器的點的坐標輸入儀器的測站點對應的X、Y處,再對准點B點,輸入B點的坐標,全站儀就可以找到北方向,確定北方向的方法如下:

1)先計算AB的象限角β,tanβ=|ΔY/ΔX|=|XB—XA|/|YB—YA|,β=arctan|ΔY/ΔX|

2)計算方位角:αi=β,ΔY>0,ΔX>0(第一象限);αi=1800-β,ΔY>0,ΔX<0(第二象限);

αi=1800+β,ΔY<0,ΔX<0(第三象限);αi=3600-β,ΔY<0,ΔX>0(第四象限)

2數據採集程序的原理

1)在進行數據採集之前首先先將水平角置於HR。

2)架設儀器於A點,進入數據採集程序,輸入A點坐標(1000,1000),然後將望遠鏡十字絲交點對准B點所立的單桿尖部(盡量要對准尖部,因為對准尖部要比對准棱鏡的十字絲交點要更准確),輸入B點的坐標(1200,1300),這樣全站儀就找到了北方向。找到北方向主要是讓全站儀建立坐標系,這樣全站儀才能將所測的點都置於同一個坐標系內。

那麼全站儀是怎麼找到北方向的呢?如下圖:在三角形ABM中,BM=YB-YA=1300-1000=300,AM=XB-XA=1200-1000=200,tanα=BM/AM=1.5,α=arctan1.5=560

18'36'',這時候全站儀會認為從對准B點的方向逆時針旋轉56018'36'',就是北方向,同時從A點垂直於北方向的方向就是東方向

3)全站儀找到北方向後,將全站儀從對准B點轉到對准C點,從對准B點轉到對准C點的過程中,全站儀直接將β就測出來了,在上圖中β=20°15'20'',對准C點後,直接按測量鍵,全站儀就會測量AC的距離,AC的距離出來後,全站儀就會利用內部的程序將C點坐標計算出來:γ=90°-α-β=90°-56°18'36"-20°15'20"=13°26'04",AC=100m

AN=YC-YA=YC-1000,CN=XC-XA=XC-1000,sinγ=CN/AC=(XC-1000)/100=0.2323所以XC=1023.233;cosγ=AN/AC=(YC-1000)/100=0.9726,所以YC=1097.263

3坐標放樣的原理

1)在進行放樣之前首先先將水平角置於HR。

2)在此程序里,全站儀確定北方向的原理同上面的數據採集里的方法。

3)全站儀找到北方向後,將C點的坐標(1020,1090)輸入儀器裡面,這時候全站儀就直接計算出AC這條邊的方位角β=arc-tan4.5=77°28'16"(計算的方法同AB的方位角α),然後按角度鍵(有的儀器是極差鍵),儀器就會顯示出dHR=γ=β-α=21°

09'40",然後轉動儀器將dHR變為0,然後指揮棱鏡立到dHR為0的這個方向上(假如棱鏡現在立在D點上),你現在棱鏡放的點然後將望遠鏡十字絲對准棱鏡的十字絲,然後按一下全站儀上的距離鍵,儀器就會測量AD的距離,AD=50.123,同時儀器也會計算出AC的距

離,AC2=(YC-YA)2+(XC-XA)2=92.195m,隨後儀器會顯示出dHD=AC-AD=40.072,AC-AD很顯然是大於零的,大於零意思是你要將棱鏡在這個方向上朝遠離儀器移動40.072;如此反復,一直到dHD顯示為0為止,這時候C點在地面上的位置就定出來了;(假如棱鏡現在立在E點上),你現在棱鏡放的點然後將望遠鏡十字絲對准棱鏡的十字絲,然後按一下全站儀上的距離鍵,儀器就會測量AE的距離,AD=100.256,同時儀器也會計算出AC的距離,AC2=(YE-YA)2+(XE-XA)2=92.195m儀器會顯示出dHD=AC-AE=-8.061,AC-AE很顯然是小於零的,小於零意思是你要將棱鏡在這個方向上朝儀器移動8.061,如此反復,一直到dHD顯示為0為止,這時候C點在地面上的位置就定出來了。

『柒』 三坐標的基本測量方法及注意事項是什麼

據中國儀器超市網介紹基本測量方法:
1、量測前准備:
a、檢查空氣軸承壓力是否足夠
b、安裝工件
2、測頭選擇及安裝:
a、將適當之測頭裝於Z軸承接器
b、檢視Z軸是否會自動滑落(否則應調整紅色壓力平衡調整閥)
c、鎖定各軸之適當位置
3、量測操作:
a、開啟處理機電源
b、啟開列印機開關
c、參考操作手冊,選擇所需功能之指令
d、進行量測,並讀出量測值
4、完成後注意事項:
a、Z軸移至原來位置後,鎖定
b、X,Y軸各移至中央,鎖定
c、關電源及壓力閥
d、取下測頭
e、並作適當的保養
注意事項:
1、工件吊裝前,要將探針退回坐標原點,為吊裝位置預留較大的空間;工件吊裝要平穩,不可撞擊三次元測量儀的任何構件。
2、正確安裝三次元的零件,安裝前確保符合零件與三坐標測量機的等溫要求,恆溫條件下,提前四個小時以上放入被測工件。
3、建立三次元測量儀的正確坐標系,保證所建立的坐標系符合圖紙的要求,這樣才能確保所測得的數據准確。
4、當編好三次元測量機的程序自動運行時,要防止探針與工件的干涉,故需注意要增加拐點。
5、對於一些大型較重的模具、檢測,測量結束後應該及時的吊下工作台,避免三坐標的工作台長時間的處於承載狀態。
6、檢測完成後,立即清潔三坐標測量儀的工作台檯面,確保下次正常的使用

『捌』 測量坐標系的確定

(一)我國常用的大地坐標系

在大地測量中,通常採用的坐標系有兩種:地球坐標系和天球坐標系。地球坐標系是固定在地球上並和地球一起自轉和公轉,天球坐標系是不和地球一起自轉但和地球一起公轉的坐標系。地球坐標系又可分為參心坐標系和地心坐標系。參心坐標系是各國為了研究地球一部分表面和大小,在使地面數據歸算到橢球各項改正數最小的原則下選擇和局部區域的大地水準面最為密合的橢球作為參考橢球建立的坐標系。其定義為:原點位於參考橢球中心O,Z 軸平行於參考橢球的旋轉軸,X 軸指向大地起始子午面,Y軸垂直於X OZ 平面,構成右手坐標系。由於參考橢球的中心與地球的質心不一致,參心坐標系又稱相對坐標系。地心坐標系的坐標原點O 設在大地體的質量中心,用相互垂直的X,Y,Z 三個軸來表示,X 軸與首子午面與赤道面的交線重合,向東為正;Z 軸與地球旋轉軸重合,向北為正;Y軸與XZ 平面垂直構成右手系。我國目前常用的大地坐標系有1954年北京坐標系、1980西安坐標系、WGS84坐標系和2000國家大地坐標系。其中,1954年北京坐標系、1980 西安坐標系屬於參心坐標系,WGS84 坐標系、2000國家大地坐標系屬於地心坐標系。

1.1954年北京坐標系

1954年北京坐標系為參心大地坐標系,長半軸6378245米,扁率1/298.3,大地上的一點可用經度L54、緯度B54和大地高H54定位,它是以克拉索夫斯基橢球為基礎,經局部平差後產生的坐標系。

新中國成立以後,我國大地測量進入了全面發展時期,在全國范圍內開展了正規的、全面的大地測量和測圖工作,迫切需要建立一個參心大地坐標系。由於當時的政治趨向,我國採用了前蘇聯的克拉索夫斯基橢球參數,並與前蘇聯1942年坐標系進行聯測,通過計算建立了我國大地坐標系,定名為1954年北京坐標系。因此,1954年北京坐標系可以認為是前蘇聯1942年坐標系的延伸。它的原點不在北京而是在前蘇聯的普爾科沃。隨著測繪工作的推進,1954年北京坐標系存在的缺陷限制了測繪質量的提高:採用的前蘇聯克拉索夫斯基橢球參數有較大誤差,與現代精確的橢球參數相比,長半軸約大105米;參考橢球面與我國大地水準面符合較差,自西向東呈明顯系統性傾斜,使得大比例尺地圖反映地面的精度受到影響;全國是多個平差網,坐標系總體精度差,個別地方誤差達100多米。

新北京54坐標系是在1980西安坐標系基礎上將基於1975國際橢球的1980西安坐標系成果數據整體轉換為基於克拉索夫斯基橢球的坐標值,並將西安1980坐標系原點平移得到的,新北京54坐標系綜合1980西安坐標系和1954年北京坐標系而建,採用多點定位,定向明確,與1980西安坐標系平行,但橢球面與大地水準面不是最佳密合,大地原點與1980西安坐標系相同,但大地起算數據不同,新北京54坐標系與1954年北京坐標系之間並無全國統一參數,只能局部轉換。但與1980西安坐標系有統一參數。這種坐標系平常使用率極低。

2.1980 西安坐標系

為了克服1954年北京坐標系存在的缺陷,1982年全國完成天文大地網整體平差,建立了1980西安坐標系。1980西安坐標系原點在我國中部陝西省涇陽縣永樂鎮,橢球參數採用IUGG1975年大會推薦的參數,長半軸6378140米,扁率1∶298.257,該橢球參數既確定了地球的幾何形狀又表明了地球的基本物理特徵,將大地測量與大地重力的基本參數統一,與天文常數系統中的地球橢球參數完全一致;該坐標系為參心坐標系,橢球短軸Z 軸平行於地球質心指向地極原點方向,大地起始子午面平行於格林尼治平均天文檯子午面,X 軸在大地起始子午面內與Z 軸垂直指向經度0方向,Y軸與Z、X軸成右手坐標系;橢球採用多點定位,橢球定位時按我國范圍內高程異常值平方和最小為原則求解參數,與我國大地水準面吻合較好;基準面採用青島港驗潮站1952~1979年確定的黃海平均海水面(即1985國家高程基準);我國天文大地網平差方案先進、歸算嚴格、成果精度高。由此可見,1980西安坐標系更符合我國國情。從20世紀80年代中期開始,我國完成的基礎地理和地形測量,包括目前的標准圖幅1∶50000數字地形圖、1∶250000數字地形圖均採用1980西安坐標系。

3.WGS-84坐標系

WGS-84坐標系(World Geodetic System)是一種國際上採用的地心坐標系。坐標原點為地球質心,其地心空間直角坐標系的Z 軸指向國際時間局(BIH)1984.0定義的協議地極(CTP)方向,X軸指向BIH1984.0的協議子午面和CTP赤道的交點,Y軸與Z軸、X軸垂直構成右手坐標系,稱為1984年世界大地坐標系。這是一個國際協議地球參考系統(ITRS),是目前國際上統一採用的大地坐標系。GPS廣播星歷是以WGS-84坐標系為根據的。WGS-84坐標系,長半軸6378137米,扁率1/298.257223563。

由於採用的橢球基準不一樣,並且由於投影的局限性,致使全國各地並不存在一致的轉換參數。對於這種轉換,一般採用GPS聯測已知點,應用GPS軟體自動完成坐標的轉換。如果條件不許可,但是有足夠的重合點,可以進行人工解算。

4.2000國家大地坐標系

為了適應社會經濟和科學發展的需要並與國際接軌,我國在2008年又建立了2000國家大地坐標系。經國務院批准,從2008年7月1日起,啟用2000國家大地坐標系。以地球質量中心為原點的坐標系統,可以大幅度提高測量精度。地心坐標系下,大地控制點的精度比現行參心坐標系的精度提高10倍。目前,利用空間技術得到的定位成果和影像數據都是地心坐標系為參照系,採用地心坐標系可以更好的闡明地球上各種地理物理現象,特別是空間物體的運動。2000國家大地坐標系的原點包括海洋和大氣整個地球的質量中心,Z 軸指向歷元2000.0地球參考極方向。(在天文學上,歷元是為指定天球坐標或軌道參數而規定的某一特定時刻。在天文學和衛星定位中,所獲數據對應的時刻也稱為歷元。)該歷元的指向由國際時間局給定的1984.0作為初始指向來推算,定向的時間演化保證相對於地殼不產生殘余的全球旋轉。X 軸由原點指向格林尼治參考子午線與地球赤道面的交點,Y軸與Z 軸、X 軸構成右手坐標系。長半軸a=6378137米,扁率1/298.257222101,地心引力常數GM=3.98604 418×1014立方米/秒平方,地球自轉角速度ω=7.292115×105弧度/秒,是國際大地測量和物理聯合會1979推薦的地球橢球。目前,2000坐標系國家大地控制點數量很少,在很多地區還沒有建立大地控制點;現有的海量的測繪數據和基礎地理成果採用的是1980西安坐標系,轉換為2000坐標系需要有一個過程。有鑒於此,國家對2000坐標系設置了10年的過渡期。

(二)我國的高程系統

高程基準是推算國家統一高程式控制制網中所有水準高程的起算依據,它包括一個水準基面和一個永久性水準原點。國家高程基準是根據驗潮資料確定的水準原點高程及其起算面。目前我國常見的高程系統主要包括1956年黃海高程系、1985國家高程基準、吳凇高程基準、珠江高程基準等。

1.1956年黃海高程系

1956年我國根據基本驗潮站應具備的條件選擇青島驗潮站作為我國的基本驗潮站,它位於我國海岸線中部,沒有江河入海口,外海海面開闊,無密集島嶼和淺灘,海底平坦,水深10米左右,驗潮井建立在地質結構穩定的基岩上。1956年9月4日國務院批准《中華人民共和國大地測量法式(草案)》首次建立的國家高程基準為1956年黃海高程系統,該原點1956年黃海高程系的計算高程為72.289米。

2.1985國家高程基準

1956年黃海高程系的建立對同一全國高程有重要意義,但是從潮汐變化周期看,1956年黃海高程系採用的驗潮資料時間較短,不到一個潮汐變化周期(一個潮汐變化周期是18.61年),資料中含有粗差值。確定1985國家高程基準所依據的驗潮資料是1952~1979年青島驗潮站的數據,利用中數法的計算值推算出來的,1987年國家測繪局公布中國高程基準面啟用1985國家高程基準,同時廢止1956年黃海高程系。由於新發布的國家一等水準網點是以「1985國家高程基準」起算的,各級水準測量、三角高程測量、工程測量盡可能與新發布的一等水準網聯測。如果不便於聯測,也可採用全國統一的換算關系。我國不同高程系統的換算關系:

「1985國家高程基準」=「1956年黃海高程」﹣0.029米

「1956年黃海高程」=「吳凇高程基準」-1.688米

「1956年黃海高程」=「珠江高程基準」+0.586米

「珠江高程基準」=「1985國家高程基準」﹣0.557米

「廣州高程基準」=「1985國家高程系」+4.26米

「渤海高程」=「1985國家高程系」﹣3.048米

「波羅的海高程」為前蘇聯國家高程系統,我國新疆境內尚有部分水文站一直使用該高程系,其與1956年黃海高程的換算關系為:

「波羅的海高程」=「1956年黃海高程」﹣0.74米

此外,香港目前採取的高程基準為1980年確定的HKPD,為「平均海面「之下約1.23米。台灣高程基準以基隆港平均海水面為高程基準面。

本次礦業權實地核查礦業權證上的標高上限和下限是1956年黃海高程基準,根據礦政管理需要,可以直接看做是1985國家高程基準,不必進行換算。控制點能收集到1985國家高程基準的直接使用,原有控制點使用其他高程基準的,可按上述關系換算。

(三)高斯-克呂格投影和橫軸墨卡托投影

由於地球是一個赤道略寬兩極略扁的不規則的梨形球體,故其表面是一個不可展平的曲面。把地球表面的任意點,利用一定數學法則,轉換到地圖平面上的理論和方法,稱為地圖投影。目前常用的投影方法有高斯-克呂格投影、橫軸墨卡托投影(正軸等角圓柱投影)等。

1.高斯-克呂格投影

高斯-克呂格投影(Gauss-Krüger projection)簡稱「高斯投影」,又名「等角橫切橢圓柱分帶投影」,屬於地球橢球面和平面間正形投影的一種。由德國數學家、物理學家、天文學家高斯(1777~1855)於19世紀20年代擬定,後經德國大地測量學家克呂格(1857~1928)於1912年對投影公式加以補充。該投影按照投影帶中央子午線投影為直線且長度不變和赤道投影為直線的條件,得到高斯-克呂格投影公式。投影後,除中央子午線和赤道為直線外,其他子午線均為對稱於中央子午線的曲線。設想用一個橢圓柱橫切於橢球面上投影帶的中央子午線,按上述投影條件,將中央子午線兩側一定經差范圍內的橢球面正形投影於橢圓柱面。將橢圓柱面沿過南北極的母線剪開展平,即為高斯投影平面。取中央子午線與赤道交點的投影為原點,中央子午線的投影為縱坐標X 軸,赤道的投影為橫坐標Y軸,構成高斯-克呂格平面直角坐標系。

高斯-克呂格投影在長度和面積上變形很小,中央經線無變形,自中央經線向投影帶邊緣,變形逐漸增加,變形最大之處在投影帶內赤道的兩端。由於其投影精度高,變形小,而且計算簡便(各投影帶坐標一致,只要算出一個帶的數據,其他各帶都能應用),因此通常在大比例尺地形圖中應用,能在圖上進行精確的量測計算。高斯-克呂格投影分帶:按一定經差將地球橢球面劃分成若干投影帶,這是高斯投影中限制長度變形的有效方法。分帶時既要控制長度變形使其不大於測圖誤差,又要使帶數不致過多以減少換帶計算工作,據此原則將地球橢球面沿子午線劃分成經差相等的瓜瓣形地帶,以便分帶投影。通常按經差6°或3°分為6°帶或3°帶(圖4-1)。

圖4-1 高斯-克呂格投影分帶示意圖

國家規定1∶250000以下比例尺地形圖採用60帶投影,1∶10000以上地形圖採用3°帶投影。6°帶自0°子午線起每隔經差6°自西向東分帶,帶號依次編為第1、2、…、6°帶。3°帶是在6°帶的基礎上分成的,它的中央子午線與6°帶的中央子午線和分帶子午線重合,即自1.5°子午線起每隔經差3°自西向東分帶,帶號依次編為3°帶第1、2、…、120帶。我國的經度范圍西起73°東至1350,可分成6°帶11個,各帶中央經線依次為75°、81°、87°、…、117°、123°、129°、135°,或3°帶22個。高斯-克呂格投影是按分帶方法各自進行投影,故各帶坐標成獨立系統。以中央經線投影為縱軸(X),赤道投影為橫軸(Y),兩軸交點即為各帶的坐標原點。縱坐標以赤道為零起算,赤道以北為正,以南為負。我國位於北半球,縱坐標均為正值。橫坐標如以中央經線為零起算,中央經線以東為正,以西為負,橫坐標出現負值,使用不便,故規定將坐標縱軸西移500千米當做起始軸,凡是帶內的橫坐標值均加500千米。由於高斯-克呂格投影每一個投影帶的坐標都是對本帶坐標原點的相對值,所以各帶的坐標完全相同,為了區別某一坐標系統屬於哪一帶,在橫軸坐標前加上帶號,如(4231898米,21655933米),其中21即為帶號,4231898米即為點到赤道的弧長,655933米-500000米為點離開中央子午線123°的弧長。

高斯直角坐標系與數學中的笛卡爾坐標系不同,如圖4-2所示。高斯直角坐標系縱坐標為X 軸,橫坐標為Y軸,α叫做方位角,坐標象限為順時針劃分四個象限。角度起算是從X 軸的北方向開始,順時針計算。這些定義都與數學上和計算機軟體的定義不同。這樣的做法是為了將數學上的三角和解析幾何公式直接用到測量的計算上。

圖4-2 高斯直角坐標系與笛卡爾坐標系的比較

2.橫軸墨卡托投影

某些國外的軟體如ArcINFO 或國外儀器的配套軟體如多波束的數據處理軟體等,往往不支持高斯-克呂格投影,但支持UTM 投影,因此常有把UTM 投影坐標當做高斯-克呂格投影坐標提交的現象。UTM 投影全稱為「通用橫軸墨卡托投影」,是等角橫軸割圓柱投影(高斯-克呂格為等角橫軸切圓柱投影),圓柱割地球於南緯80°、北緯84°兩條等高圈,該投影將地球劃分為60個投影帶,每帶經差為6°,已被許多國家作為地形圖的數學基礎。UTM 投影與高斯投影的主要區別在南北格網線的比例系數上,高斯-克呂格投影的中央經線投影後保持長度不變,即比例系數為1,而UTM 投影的比例系數為0.9996。UTM 投影沿每一條南北格網線比例系數為常數,在東西方向則為變數,中心格網線的比例系數為0.9996,在南北縱行最寬部分的邊緣上距離中心點大約363千米,比例系數:1.00158。高斯-克呂格投影與UTM 投影可近似採用XUTM=0.9996×X高斯,YUTM=0.9996×Y高斯進行坐標換算。UTM投影自西經180°起每隔經差6°自西向東分帶,第1帶的中央經度為﹣1770,因此高斯-克呂格投影的第1帶是UTM的第31帶。此外,兩投影的東偽偏移都是500千米,高斯-克呂格投影北偽偏移為零,UTM 北半球投影北偽偏移為零,南半球則為10000千米。

(四)礦業權實地核查坐標系的確定

本次礦業權實地核查測量採用1980西安坐標系,1985國家高程基準。所有實測成果提供3°帶成果,坐標橫跨兩帶的提供面積較大的一帶成果。主要基於以下考慮:

(1)1954年北京坐標系是前蘇聯1942年坐標網在中國的延伸,和現代通用的橢球體參數差別大,全國是多個網分區平差,分區提供成果。其長軸和現代地球橢球誤差達100多米,坐標系總體精度差。特別是各網的接邊處,其最大接邊誤差可達10多米,使用1954年北京坐標系是當時的歷史條件決定的,現在不宜再繼續採用。

(2)1980西安坐標系採用國際IUGG(國際大地測量和地球物理學聯合會)推薦的1975橢球體,更加符合科學技術的發展。與1979年推薦橢球除了長軸小了3米,其他3個參數值完全一致。採用了JYD1968.0固定平極作為地極坐標原點,用光學觀測技術確定的地極參考系的精度大致為±0.1″。橢球面與似大地水準面在我國境內最為密合。

(3)現有的權威基礎地理數據全部採用1980西安坐標系。從20世紀80年代末我國測繪工作開始採用1980西安坐標系,國家測繪局2000年以來提供的1∶10000、1∶50000基礎地理資料庫為1980西安坐標系,尤其是對礦政管理至關重要的行政區劃勘界成果均採用1980西安坐標系。另外在礦政管理的審批中,有關的規劃圖件及已經啟動的全國第二次土地調查等工作也都採用1980西安坐標系。在所有礦業權都進行實測的大前提下,採用1980西安坐標系和1954年北京坐標系的測量工作量基本上是一樣的。同時,通過本次實測還可求出各礦業權范圍這兩種坐標系的精確轉換參數,為統一的坐標轉換奠定基礎。

(4)採用2000國家大地坐標系的條件尚不成熟,將來由1980西安坐標系轉換為2000坐標系是比較容易的。

(5)1956年黃海高程系已經廢止,國家測繪局不再提供1956年黃海高程系的高程。

『玖』 rtk測量時基準站坐標怎麼測

基準站的觀測點位的選擇和系統設置
(1)GPS RTK定位的數據處理過程是基準站和流動站之間的單基線處理過程,基準站和流動站的觀測數據質量好壞、無線電的信號傳播質量好壞對定位結果的影響很大。實際野外工作時,流動站作業點是由測量任務決定的,因此基準站的選擇就顯得尤為重要了。
(2)基準站的設置包括:建立項目和坐標系統管理、基準站電台頻率的選擇、GPS RTK工作方式的選擇、基準站坐標輸入、基準站工作啟動等。
2)流動站GPS的設置
流動站GPS的設置包括:建立項目和坐標系統管理、流動電台頻率的選擇、有關坐標的輸入、GPS RTK工作方式的選擇、流動站RTK工作啟動、使用RTK流動站測量地形點等。
3)中繼站電台的設立
中繼電台只是轉發信號,只要中繼電台能夠接收基準站電台信號,同時能夠將其發送給流動站使用,可以按需安排隨時任意安排位置。

閱讀全文

與基坐標系測量方法相關的資料

熱點內容
馬原中歸納的方法有什麼局限性 瀏覽:508
燈具遙控安裝方法 瀏覽:984
在家地震預警有哪些方法論 瀏覽:398
氣缸圓柱度的檢測方法 瀏覽:214
東風制動燈故障原因和解決方法 瀏覽:309
簡諧運動研究方法 瀏覽:122
幼兒異物吸入的搶救方法有哪些 瀏覽:210
開衫毛衣尺寸的經典計算方法 瀏覽:356
廣電有線連接方法 瀏覽:826
局解血管的檢查常用方法 瀏覽:987
瑜伽的技巧和方法 瀏覽:833
寫出五種植物的傳播方法 瀏覽:97
治療脾氣差的最佳方法 瀏覽:814
花卉滿天星的種植方法 瀏覽:965
風控未通檢測方法 瀏覽:767
根管治療術的步驟和方法 瀏覽:180
去腳臭的簡單的方法 瀏覽:934
二年級語文教學方法和教學手段 瀏覽:68
學前教育研究方法課題 瀏覽:866
瑜伽胳膊鍛煉方法 瀏覽:124