① 二次函數配方法步驟。
二次函數配方要注意的主要有兩點
(1)要把二次項x²前面的系數化為1
(2)要加上一次項x的系數一半的平方
圖片中就體現了這兩點
② 二次函數配方步驟
1.轉化: 將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式 2.移項: 常數項移到等式右邊 3.系數化1: 二次項系數化為1 4.配方: 等號左右兩邊同時加上一次項系數一半的平方 5.求解: 用直接開平方法求解 整理 (即可得到原方程的根) 代數式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n) 例:解方程2x^2+4=6x 1. 2x^2-6x+4=0 2. x^2-3x+2=0 3. x^2-3x=-2 4. x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等) 5. (x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6. x-1.5=±0.5 7. x1=2 x2=1 (一元二次方程通常有兩個解,X1 X2)
編輯本段二次函數配方法技巧
y=ax&sup要的一項,往往在解決方程,不等式,函數中需用,下面詳細說明: 首先,明確的是配方法就是將關於兩個數(或代數式,但這兩一定是平方式),寫成(a+b)平方的形式或(a-b)平方的形式: 將(a+b)平方的展開得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必須要有a^2,2ab,b^2 則選定你要配的對象後(就是a^2和b^2,這就是核心,一定要有這兩個對象,否則無法使用配方公式),就進行添加和去增,例如: 原式為a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式為a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 這就是配方法了, 附註:a或b前若有系數,則看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)
③ 二次函數配方法解法
步驟1.把二次項系數提出來。
2.在括弧內,加上一次項系數一半的平方,同時減去,以保證值不變。
3.這時就能找到完全平方了。然後再把二次項系數乘進來即可。
舉個例子:
y=2x²-12x+7
=2(x²-6x+3.5) ——提出二次項系數「2」
=2(x²-6x+9+3.5-9) ——-6的一半的平方是9,加上9再在後面減掉
=2[(x-3)²-5.5] ——x²-6x+9是完全平方,等於(x-3)²
=2(x-3)²-11 ——二次項系數再乘進來
所以該二次函數的頂點坐標為(3,-11)。