A. 攝影測量基礎知識
(一)地面攝影測量
1.地面攝影測量定義
利用地面攝影的像片對所攝目標物進行的攝影測量,是指利用安置在地面上基線兩端點處的攝影機向目標拍攝立體像對,對所攝目標進行測繪的技術。可用於險阻高山區、小范圍山區和丘陵地區測圖,還可用於地質、冶金、采礦、水利和鐵道等方面的勘察。
2.地面攝影測量分類
地面攝影測量分為外業工作和內業工作。
外業工作包括攝影和測量。攝影是在基線兩端點,用攝影經緯儀或其他攝影機按一定方式分別攝影,以獲取目標的立體像對。測量工作,先選攝影基線,後用普通測量方法測定基線長度、基線端點和檢查點的坐標和高程,為內業像片處理提供起始數據。
內業成圖方法分為圖解法、模擬法和解析法。圖解法是根據立體坐標量測儀量測出像點坐標和左右視差值,按相似三角形關系設計一種圖板,用圖解法求出地面點的平面位置和高程。模擬法是利用地面立體測圖儀進行測圖的方法。解析法是按一定的數學公式求出地面點在其地面輔助坐標系中的空間坐標,再轉換為地面坐標。解析法適應性強,精度高,是常用的方法。
(二)航空攝影測量
航空攝影測量指的是在飛機上用航攝儀器對地面連續攝取像片,結合地面控制點測量、調繪和立體測繪等步驟,繪制出地形圖的作業。
1.航攝像片與地圖的區別
航攝像片是地面景物的中心投影構象,而地圖則是地面景物的正射投影,這是兩種不同性質的投影。只有當地面嚴格水平且像片也嚴格水平時,上述兩種投影結果才等效。
地圖是地表面根據一定的比例按正射投影位置來描繪的,其平面位置是正確的。當航攝像片有傾角或地面有高差時,所攝得的像片與上述理想情況會有差異。這種差異表現為像點位移,它包括因像片傾斜引起的像點位移和因地形起伏引起的像點位移,後者又稱為投影差。航攝像片上所存在的傾斜位移與投影差決定了其不能直接作為地圖使用。
2.像片傾斜引起的像點位移
一般情況下,航空攝影所獲取的像片是傾斜的,此時,即使地面嚴格水平,航攝像片上的目標物體也會因為像片傾斜而產生變形或像點位移。這種位移的結果使得像片上的幾何圖形與地面上的幾何圖形產生變形,而且像片上影像比例尺處處不等。正是由於存在這種差異,使得中心投影的航攝像片不具備正射投影的地圖功能。攝影測量中對這種因像片傾斜引起的像點位移可用像片糾正的方法予以改正。
3.航空攝影測量的優點
1)航攝像片充分客觀地記載了地物地貌在攝影時瞬間的狀態。因而具有信息量大、形態逼真、精度較均勻的特點。
2)航測很大一部分工作將由室外移至室內。因此,節約了大量的人力、物力,還減少了天氣季節的影響。
3)航測成圖具有成圖快、精度好、成本低和工效高的特點。
4.航空攝影測量外業、內業工作內容
航空攝影測量需要進行外業和內業兩方面的工作。
航測外業是為航測內業提供控制測量成果和調繪像片,包括以下工作:①像片控制點聯測。像片控制點一般是航攝前在地面上布設的標志點,也可選用像片上的明顯地物點(如道路交叉點等),用普通測量方法測定其平面坐標和高程。②像片調繪。是圖像判讀、調查和繪注等工作的總稱。在像片上通過判讀,用規定的地形圖符號繪注地物、地貌等要素;測繪沒有影像的和新增的重要地物;注記通過調查所得的地名等。外業調繪中的主要調繪目標有獨立地物調繪,居民地調繪,道路及其附屬設施調繪,管線、垣柵和境界的調繪,水系、地貌、土質和植被的調繪,地理名稱的調查和注記等。
航測內業工作包括:①測圖控制點的加密。以前對於平坦地區一般採用輻射三角測量法,對於丘陵地和山地則採用立體測圖儀建立單航線模擬的空中三角網,進行控制點的加密工作。②用各種光學機械儀器及計算機測制地形原圖。
(三)航天攝影測量
航天攝影測量利用航天攝影資料所進行的攝影測量。
1972年美國成功發射了第一顆地球資源衛星(後改為陸地衛星),標志著航天攝影測量時代的開始。之後美國發射了陸地衛星1~5號,法國於1985年成功發射了SPOT衛星1號,我國也成功發射了測地衛星。
衛星影像(遙感影像)在測繪中主要被用來測繪地形圖、製作正射影像圖或各種專題圖。這里簡要列出衛星影像解析度與成圖比例尺的關系,以及幾種常見衛星及其感測器。
1.衛星影像解析度與成圖比例尺的關系
各種衛星與影像圖比例尺之間的關系如表1-10所示。
表1-10 衛星解析度與成圖比例尺
2.常用衛星簡介
(1)Landsat衛星系列
Landsat衛星系列屬於太陽同步極軌衛星,其運行軌道高度和傾角分別為750km 和98.2°,重訪周期為16日。自1972年發射第一顆Landsat衛星後,美國NASA共發射了7顆Landsat系列衛星,已連續觀測地球35年。最後一顆Landsat-7衛星也於1999年4月15日發射成功。
(2)SPOT衛星系列
法國SPOT衛星系列屬於太陽同步准回歸軌道,其運行軌道高度和傾角分別為830km和98.7°,重訪周期為26日,但由於採用傾斜觀測,所以,實際上可以對同一地區用4~5天的間隔進行觀測。它搭載兩台高解析度遙感器HRV,具有通過側視進行立體觀測等優點。1986~1998年法國相繼發射了1~4號星。2002年5月發射的SPOT-5號星解析度達到了2.5m,在數據壓縮、存儲和傳輸等一系列方面都有了顯著的提高。
(3)新型高解析度遙感衛星及感測器
目前常的新型高解析度遙感衛星有:IKONOSⅡ、Quick Bird、SPOT-5、P5、ALOS、WorldView-1、GeoEye-1等,其感測器主要參數見表1-11。
表1-11 新型高解析度遙感衛星及感測器
(4)國產衛星系統
目前我國主要遙感衛星有:CBERS-02 B中巴地球資源衛星、資源二號衛星、遙感二號衛星、「北京一號」小衛星、環境1號HJ1-B星、遙感一號衛星、遙感三號衛星、環境一號HJ1-A星等。
B. 怎樣使用測繪儀
隨著科學技術的不斷發展,由光電測距儀,電子經緯儀,微處理儀及數據記錄裝置融為一體的電子速測儀(簡稱全站儀)正日臻成熟,逐步普及。這標志著測繪儀器的研究水平製造技術、科技含量、適用性程度等,都達到了一個新的階段。
全站儀是指能自動地測量角度和距離,並能按一定程序和格式將測量數據傳送給相應的數據採集器。全站儀自動化程度高,功能多,精度好,通過配置適當的介面,可使野外採集的測量數據直接進入計算機進行數據處理或進入自動化繪圖系統。與傳統的方法相比,省去了大量的中間人工操作環節,使勞動效率和經濟效益明顯提高,同時也避免了人工操作,記錄等過程中差錯率較高的缺陷。
假設:測站點坐標為(500,300,362),後視點坐標為(500,445,456),測點坐標為(471.7,777.9,385)(以CAD畫出的)。如何直接測出測點坐標?一般來說分為這樣幾步:
1.輸入坐標,測站點、後視點及要測的碎布點事先是家裡輸入進去的。具體可以參考數據錄入這一塊。
2.到了野外,首先是一起對中整平,開機後,進入坐標測量。
3.設置測站點。
4.設置後視點,這是很關鍵的是儀器不同,方法不同。
一般都要,擬設好後視點後,要對後視點進行一次測量,這個過程實際就是陪准坐標系統。配好以後一起會將測量的後視點坐標直接顯示出來,這時候你可以和己有的坐標對照一下。一般來說,二者之差不大於5cm就可以啦。
5.測量。
注意:一般全站儀測角精度都不是很高。還有對中誤差,後視誤差等等,要求精度高可以用GPS靜態測量。
各位朋友,如果對我們東英時代的講解還有不清楚的地方,歡迎留言提問或者私信哦!我們將為大家一一解答,也歡迎各位學測量的朋友到學校考察,培訓,全面系統化的學習,最終達到掌握測量知識技能,成為一名優秀的測量員。