Ⅰ 水的流速如何檢測
水的流速的檢測方法如下:
1、薄壁堰法
測量精度較高,比較常用的有薄壁三角堰法、薄壁矩形堰法和薄壁梯形堰法。a、薄壁三角堰法適用條件:它適用於水頭0.05 m ≤H ≤0.35 m、流量Q≤0.1 m3/ s 的水流量測。b、薄壁矩形堰法適用條件:測量過堰水深H時,應在堰口上游大於3H處進行。
2、巴氏槽法
具有水頭損失小、不宜沉積雜物、量水精度高等特點。缺點是造價高、對施工質量要求也較高。適用條件:槽各部位尺寸符合標准槽要求,在設計安裝時不能隨意改變給定的標准尺寸;在進口的下游應有不小於0.2m的跌水。
3、容積法
在一段時間內,使渠道內的污水引入體積經過率定的容器中,用時間終了與起始時刻相對應的水量凈體積差△V除以時段差△t,結果即流量Q,重復測量數次,取平均值。適用條件:流量較小,排水渠道不規范。
4、流量計法
選用有針對性的專業流量計進行測量。根據流量計的結構原理,可分為以下幾種類型:容積式流量計、葉輪式流量計、差壓式流量計、電磁流量計、超聲波流量計等。
5、流速儀法
用流速儀測定水流速度,並由流速與斷面面積的乘積來計算流量的方法。流速儀法的測量成果可作為率定或校核其他測流方法的標准。適用條件:在水深大於10cm、流速不小於0.05m/s時,可用流速計測量流速。
6、浮標法
一種簡便的測流方法,根據觀測浮標漂移速度,測量水道橫斷面,以此來推估斷面流量。適用條件:渠道長度不小於10米、無彎曲、底壁平滑。
Ⅱ 如何測定河流水位河道水流流速指什麼
河流水位由設在兩岸的標尺測定,標尺上有很多E字樣的刻度,相鄰刻度高差一厘米。標尺的高程是相對於某個零點高程起算的,如黃海零點等。河流某個斷面的平均流速是通過這個斷面的流量除以這個斷面水下的斷面面積。河流斷面上的流速分布,必須在斷面上用流速儀逐點量測,某一點流速就是指單位時間內該處的水移過的距離。
河流泥沙,分推移質泥砂和懸移質泥沙,懸移質泥沙的含沙量可取一定量的河水讓它靜止沉澱,取出泥乾燥後稱重,得到懸移質泥沙的含沙量。推移質含沙量要在河床斷面上量測河床的岩基高程和泥沙靣高程,相隔一定時段量量測沙面高程,算出某段時間內的沙面厚度的變化,可計算出推移質的含沙量(推移質輸沙率)。大致如此吧。
Ⅲ 尋求液體流速測量的方法
激光多普勒流速測量技術
作者:朱 瑞 編輯:admin 發布時間:2006-5-6
QQ群交流:查看群號|醫葯黃頁|資料下載無憂 新聞摘要:激光多普勒流速測量技術(LDA)是用來測量氣體或液體流速的。這項技術與傳統的測量技術相比具有顯著優勢,它可以精確測量許多不同粒子的速度,而不需要另外的儀器校正。這項測量技術是非侵入式的,具有很高的頻率響應和大的動態范圍。LDA技術常應用在蒸汽流測量、風洞湍流測量和內燃機燃料流測量當中。
激光多普勒流速測量技術(LDA)用來測量氣體或液體流速的。項技術與傳統的測量技術相比具有顯著優勢,它可以精確測量許多不同粒子的速度,而不需要另外的儀器校正。這項測量技術是非侵入式的,具有很高的頻率響應和大的動態范圍。LDA技術常應用在蒸汽流測量、風洞湍流測量和內燃機燃料流測量當中。Compuscope 82G數據採集卡已被證明非常適用於LDA系統數據的採集、存儲和傳輸。
1 LDA原理
系統採用連續調制激光,激光被分成兩束,先經光學系統聚焦後相互垂直入射到粒子流中。在兩束激光交叉處便產生了干涉圖樣。激光束的後向散射經過接收光學系統後聚焦在探測器上,再由探測器實現光電轉換。LDA原理示意圖如圖1所示。
2 干涉圖樣
為了研究光電探測器接收到的信號,必須知道兩束光在交叉點產生的干涉圖樣。如圖2所示,被測對象是一個橢球體表面對應的干涉圖光強分布,光強最大的分布點在干涉圖的中心。需要指出的是�當光束角度K減小時�被測對象將會遠離聚焦光束�它的度將增加而寬度減小。
就像前面提到的那樣�信號是由粒子經過干涉圖樣反射的散射光組成,變化的振幅代表了每個干涉圖光強的變化。
多普勒脈沖串的頻率稱為多普勒頻率。該頻率與干涉圖空間常數(df)相乘可用來測量速度。從圖3可以看出,干涉圖空間常數(df)是由激光波長(λ)除以光束反射角(K)正弦的2倍得到。由於激光波長可以精確測量(精確到0.01%),因此採用LDA技術可以非常精確地測量流體速度。
3 信號捕獲和數據處理
多普勒脈沖串可由Compuscope 82G數據採集卡來捕獲。由於多普勒脈沖串是非周期信號,因此Compuscope 82G的觸發電平被設置在高於雜訊的測量值的起始電平點上。觸發後可以用自動存儲模式(AutoSave)將數據和時間保存下來。
LDA中被測信號在兆赫茲(MHz)水平上,而Compuscope 82G數據採集卡在雙通道模式下採集速率為1GS/s,因此採集到的信號可以精確可靠地重建。由Compuscope軟體提供的快速傅里葉變換(FFT)是時域信號向頻域信號變換的理想工具。注意:所採集到的數據至少包含3個部分(如圖4所示):
1)由粒子經聚焦光束而產生的較低頻率—基頻。
2)與干涉圖樣相關的加在基頻上的多普勒信號(中心頻率fd)。
3)探測器和後續電路產生的寬頻雜訊。
4 結束語
應用LDA技術,結合Compuscope 82G數據採集卡,就能組成可靠准確的流體速度測量儀。LDA技術可以提供其它技術無法達到的測量精度,而結合先進的數據採集卡也不會帶來很大的成本支出。在不久的將來,這套系統有望成為成熟的、可供選擇的流體速度測量儀。
相關主題關鍵字: 激光多普勒測量技術
Ⅳ 畢託管測量水流中某點流速的方法步驟
畢託管測量水流中某點速度時,全壓管口正對水流方向,水流轉90度彎後測得全壓,側面的一圈小孔與水流方向垂直,只感應到液體靜壓,兩管通過橡膠管接到U形管壓力計(或其他差壓計)測得兩者壓差,就是動壓即該流速水頭V^2/2g。根據壓差就可求出流速。實際中,畢託管有不同的形式,原理和使用方法大同小異。
Ⅳ 河流的水位、流速和流量是如何測定的
陸地上的大小河流,水情都不穩定。有些常年不息地流淌,有些枯水季節斷流,有些洪水季節常常泛濫成災。為了合理地利用河水資源,就必須掌握河流的變化規律。河流水情的變化主要表現為水位的升降、流速的快慢、流量的增減、泥沙的多少以及河水的水溫和冰情變化等。
(1)水位,指一定地點,一定時間河水表面的高度。它是以某一點作為水位基面(即水位零點)進行量算的。水位基面一般分絕對基面和測點基面兩種:絕對基面是以某海口的平均海平面為標准進行計算的,我國目前河流水位都是以黃海的青島零點為標准;測點基面是為了便於在河流上就地觀測和計算,通常在觀測地點最低枯水位以下半米到一米處作為零點的。但是在應用這種觀測資料時,須根據測點基面和絕對基面的關系,將其換算成統一的絕對高程。水位的漲落一般是在觀測點用水尺或自記水位計進行觀測的。水位觀測是水文中最重要的項目之一,其他一系列水文要素的計算均受水位資料的影響。根據不同時間水位的記錄,可以繪出一條某河流的水位歷時曲線,從曲線上可以清楚地看出該點全年水位變化情況。
(2)流速,指單位時間里水流前進的距離。流速在河流橫斷面上是不均勻的,底層水流由於受河床摩擦力作用,流速較小。流速由水底向水面遞增,但水面受空氣的摩擦,流速減小,而最大流速在水面稍下一點的位置。從橫向分布來說,兩岸流速最小,河心流速最大。縱向流速多運用流速儀(旋杯式或旋漿式)進行觀測。在小河上,觀測流速最簡便的方法用浮標法,即在河岸選擇甲、乙兩點,將浮標放入河面,測出浮標從甲點漂到乙點所需時間,量出甲、乙兩點的距離,按照V=L/t公式便可求得流速,其單位是米/秒(V:流速,L:甲、乙兩點間距離,t:通過L距離所用的時間)。
(3)流量,指在單位時間里,通過某過水斷面(即河流橫斷面)水的體積。根據某地過水斷面的面積和河流平均流速,按照Q=F·V公式就可以求出流量,其單位是立方米/秒(Q為流量,F為過水斷面的面積,V為平均流速)。河流水位的變化,主要由流量的增減引起的,因此水位的變化也可以視為流量變化的反映。
Ⅵ 流量和流速計算公式
流量和流速的方程為:流速乘以橫截面積就是流量。他兩個是正比例關系。
Q=Sv=常量。(S為截面面積,v為水流速度)(流體力學上長用Q=AV),單位是立方米每秒。
流速與壓力的關系是「伯努利原理」。
最為著名的推論為:等高流動時,流速大,壓力就小。
丹尼爾·伯努利在1726年提出了「伯努利原理」。
這是在流體力學的連續介質理論方程建立之前,水力學所採用的基本原理,其實質是流體的機械能守恆。
即:動能+重力勢能+壓力勢能=常數。
其最為著名的推論為:等高流動時,流速大,壓力就小。
伯努利原理往往被表述為p+1/2ρv2+ρgh=C,這個式子被稱為伯努利方程。
式中p為流體中某點的壓強,v為流體該點的流速,ρ為流體密度,g為重力加速度,h為該點所在高度,C是一個常量。
它也可以被表述為p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。
需要注意的是,由於伯努利方程是由機械能守恆推導出的,所以它僅適用於粘度可以忽略、不可被壓縮的理想流體。
Ⅶ 河流流量測量有哪些方法
河流流量測量的方法如下:
1、流量計法
利用流量計直接測量河流的流量。流量計的種類很多,主要有壓差式、電磁式、流槽式和堰式流量計等類型。可根據實際流量的流量范圍和測試精度要求選擇使用。
2、容積法
將河水接入已知容量的容器中,測定其充滿容器所需要的時間,重復測定數次,求出其平均值t(s),從而計算水量的方法。
本法簡單易行,測量精度較高,適用於河流量較小的河流。但溢流口與受納水體應有適當落差或能用導水管形成誤差。
3、浮標法
選取一平直河段,測量該河段2m間距內水流橫斷面的面積,求出其平均橫斷面的面積。在上遊河段投入浮標,測量浮標流經確定河段(L)所需要的時間,重復測量多次,求取需要時間的平均值(t),即可計算出流速(L/t),進而可按下式計算流量:
5、聲學多普勒流速測流
聲學多普勒流速測流是英文Acoustic Doppler Current Profilers 的簡稱,是利用聲學多普勒原理進行研製的。它一次能同時測出河床的斷面形狀、水深、流速和流量,適用於大江大河的流量監測。
該流量計的主機和換能器裝在一防水容器內,工作時全部浸入水中,通過防水電纜與攜帶型計算機相連,流量計的操作控制在攜帶型計算機上進行。從最初的盲區1m以上,降低到所謂的「零盲區」,剖面單元縮小到目前的0.05~0.25m ,使其在寬淺河流上的應用成為可能。
Ⅷ 怎麼測水的流速,用什麼工具。怎麼計算水的流量。
測量水的流速,要用專門的流速儀(轉子流量器),流速乘以截面積就是水的流量。
轉子流量計是根據節流原理測量流體流量的,但是它是改變流體的流通面積來保持轉子上下的差壓恆定,故又稱為變流通面積恆差壓流量計,也稱為浮子流量計。轉子流量計是工業上和實驗室最常用的一種流量計。它具有結構簡單、直觀、壓力損失小、維修方便等特點。
轉子流量計適用於測量通過管道直 徑D<150mm的小流量,也可以測量腐蝕性介質的流量。使用時流量計一般安裝在垂直走向的管段上,流體介質自下而上地通過轉子流量計,經特殊設計的轉子流量計可以水平安裝或上進底出垂直安裝。
(8)水流流速測量方法擴展閱讀:
轉子流量計的工作原理:
轉子流量計由兩個部件組成,轉子流量計一件是從下向上逐漸擴大的錐形管;轉子流量計另一件是置於錐形管中且可以沿管的中心線上下自由移動的轉子。
轉子流量計當測量流體的流量時,被測流體從錐形管下端流入,流體的流動沖擊著轉子,並對它產生一個作用力(這個力的大小隨流量大小而變化),當流量足夠大時,所產生的作用力將轉子托起,並使之升高。
同時,被測流體流經轉子與錐形管壁間的環形斷面,這時作用在轉子上的力有三個:流體對轉子的動壓力、轉子在流體中的浮力和轉子自身的重力。 流量計垂直安裝時,轉子重心與錐管管軸會相重合,作用在轉子上的三個力都沿平行於管軸的方向。
當這三個力達到平衡時,轉子就平穩地浮在錐管內某一位置上。對於給定的轉子流量計,轉子大小和形狀己經確定,因此它在流體中的浮力和自身重力都是已知是常量,唯有流體對浮子的動壓力是隨來流流速的大小而變化的。
因此當來流流速變大或變小時,轉子將作向上或向下的移動,相應位置的流動截面積也發生變化,直到流速變成平衡時對應的速度,轉子就在新的位置上穩定。對於一台給定的轉子流量計,轉子在錐管中的位置與流體流經錐管的流量的大小成一一對應關系。
為了使轉子在在錐形管的中心線上下移動時不碰到管壁,通常採用兩種方法:
1、在轉子中心裝有一根導向芯棒,以保持轉子在錐形管的中心線作上下運動。
2、在轉子圓盤邊緣開有一道道斜槽,當流體自下而上流過轉子時,一面繞過轉子,同時又穿過斜槽產生一反推力,使轉子繞中心線不停地旋轉,就可保持轉子在工作時不致碰到管壁。轉子流量計的轉子材料可用不銹鋼、鋁、青銅等製成。
Ⅸ 水流量與流速的計算公式
流量的方程為:Q=Sv=常量
(S為截面面積,v為水流速度)(流體力學上長用Q=AV),單位是立方米每秒。不可壓縮的流體作定常流動時,通過同一個流管各截面的流量不變。
對在一定通道內流動的流體的流量進行測量統稱為流量計量。流量測量的流體是多樣化的,如測量對象有氣體、液體、混合流體;流體的溫度、壓力、流量均有較大的差異,要求的測量准確度也各不相同。
因此,流量測量的任務就是根據測量目的,被測流體的種類、流動狀態、測量場所等測量條件,研究各種相應的測量方法,並保證流量量值的正確傳遞。
流速場和流線
各空間點流速的集合構成流速場。流線是流速場的幾何表示。它是同一瞬間不同流體質點所組成的曲線,線上所有質點的流速矢量都和該曲線相切。同一瞬間通過流動空間各點的流線所構成的流線圖給出該瞬間整個流動的清晰圖象。若點流速不隨時間而變化,則為恆定流;否則為非恆定流。非恆定流的流線和流線圖隨時間而變化。
以上內容參考:網路-流速
Ⅹ 如何測量流水的水速
用一個長形容器,例如大可樂瓶,裝上沙子之類的重物或者水,使它直立漂浮在水中,最好只露個瓶蓋在水面.待它漂過一段距離後,就可以測量它的移動速度,從而得到水流速度.
不用空瓶是因為水流表面的流速會快一些;裝些沙子,是為了瓶子更好的直立;過一段距離再測是為了瓶子被水流加速到等於水速.
有專門的水速儀賣,用起來也方便.