導航:首頁 > 安裝方法 > 能測量到大地的方法

能測量到大地的方法

發布時間:2024-07-28 06:32:35

1. 大地測量學的基本技術有哪些

一、大地測量學,又稱為測地學。根據德國著名大地測量學家F.R. Helmert的經典定義,大地測量學是一門量測和描繪地球表面的科學。也就是研究和測定地球形狀、大小和地球重力場,以及測定地面點幾何位置的學科。它也包括確定地球重力場和海底地形,是測繪學的一個分支。
二、基本技術:
解決大地測量學的任務傳統上有兩種方法,幾何法和物理法。
1、測地方程所謂幾何法是用幾何觀測量通過三角測量等方法建立水平控制網,提供地面點的水平位置;通過水準測量方法,獲得幾何量高差,建立高程式控制制網提供點的高程。
2、物理法是用地球的重力等物理觀測量通過地球重力場的理論和方法推推求大地水準面相對於地球橢球的距離、地球橢球的扁率等。

2. 地形地貌測量法

地形測量包括控制測量和碎部測量。
控制測量
①控制測量是測定一定數量的平面和高程式控制制點,為地形測圖的依據。平板儀測圖的控制測量通常分首級控制測量和圖根控制測量。首級控制以大地控制點為基礎,用三角測量或導線測量方法在整個測區內測定一些精度較高、分布均勻的控制點。圖根控制測量是在首級控制下,用小三角測量、交會定點方法等加密滿足測圖需要的控制點。圖根控制點的高程通常用三角高程測量或水準測量方法測定。
碎部測量
②碎部測量是測繪地物地形的作業。地物特徵點、地形特徵點統稱為碎部點。碎部點的平面位置常用極坐標法測定,碎部點的高程通常用視距測量法測定。按所用儀器不同,有平板儀測圖法、經緯儀和小平板儀聯合測圖法、經緯儀(配合輕便展點工具)測圖法等。它們的作業過程基本相同。測圖前將繪圖紙或聚酯薄膜固定在測圖板上,在圖紙上繪出坐標格網,展繪出圖廓點和所有控制點,經檢核確認點位正確後進行測圖。測圖時,用測圖板上已展繪的控制點或臨時測定的點作為測站,在測站上安置整平平板儀並定向,通過測站點的直尺邊即為指向碎部點的方向線,再用視距測量方法測定測站至碎部點的水平距離和高程,按測圖比例尺沿直尺邊沿自測站截取相應長,即碎部點在圖上的平面位置,並在點旁註記高程。這樣逐站邊測邊繪,即可測繪出地形圖。

測量方法
按所用儀器的不同,碎部測量主要有平板儀測圖法、小平板儀和經緯儀聯合測圖法、經緯儀測繪法等。
平板儀測圖法
平板儀由平板和照準儀組成。平板又由測圖板、基座和三腳架組成;照準儀由望遠鏡、豎直度盤、支柱和直尺構成。其作用同經緯儀的照準部相似,所不同的是沿直尺邊在測圖板上畫方向線,以代替經緯儀的水平度盤讀數。平板儀還有對中用的對點器,用以整平的水準器和定向用的長盒羅盤等附件。測圖時,應用測圖板上已展繪出的相應於地面控制點A、B的ɑ、b(圖2),在B點安置平板儀,以b為極點,按BA方向將平板儀定向,然後用望遠鏡照準碎部點C,通過b點的直尺邊即為指向C點的方向線。再用視距測量的方法測定B點到C點的水平距離和C點的高程,按測圖比例尺沿直尺邊自b點截取相應長度,即得C點在圖上的平面位置c,並在點旁記其高程,隨後逐點逐站邊測邊繪,即可測繪出地形圖。
經緯儀測繪法
將經緯儀安置在控制點上,選一已知方向作為零方向,測定零方向至碎部點方向之間的水平角,同時用視距測量的方法測定水平距離和高程。在經緯儀旁安置測圖板,用量角器和比例尺按極坐標法在測圖板上定出碎部點的位置並注記高程。在現場邊測邊繪。如將觀測數據帶回室內繪圖則稱為經緯儀測記法。
在碎部測量過程中,控制點的密度一般不能完全滿足施測碎部的需要,因此還要增設一定數量的測站點以施測碎部。
小平板儀與經緯儀聯合測圖法
小平板儀與平板儀不同之處,主要在於照準設備。小平板儀的照準器由直尺和前、後覘板構成,直尺上附有水準器。測圖時,將小平板儀安置在控制點上以確定控制點至碎部點的方向。在旁邊安置經緯儀,用視距測量的方法測定至碎部點的水平距離和碎部點的高程,定出碎部點在圖上的位置,並注記高程,邊測邊繪。若在平坦地區,可用水準儀代替經緯儀,碎部點的高程用水準測量的方法測定。
地形測量設計
一、地形測量工作主要步驟
1、制定工作計劃,確定實施方案;
2、收集測區已有資料,並根據實際情況編制地形測量技術設計書;
3、組織人員,成立項目部,設立技術組及質量檢查組;
4、准備各類測繪儀器及器材,製作測量標志等;
5、進行控制測量;
6、進行地形圖野外數據採集,包括各地物點、地形點的平面位置和高程數據;
7、內業計算機數據處理,成圖及各種資料整理;
8、質量檢查及驗收工作。
二、人員設備配置
為按期保質保量完成本次地形測量任務,根據工作量、作業難度、作業時間要求,分以下幾個主要階段給出應投入的人員設備數量:
1、控制網選點埋石階段:8人分成2組選埋一級導線點。
2、控制網測量階段:8人分成2組,一組用4台GPS接收機進行一級導線GPS測量。
3、圖根控制測量與外業數據採集階段:40人分成10個測圖小組,用10台全站儀進行數據採集。
4、數據處理、圖形編輯階段:共計用10台計算機,採用同一圖形數據處理、圖形編輯軟體,按《圖式》、《規范》、《制圖規范》、《設計書》的要求進行數據處理圖形編輯。
5、圖形輸出、外業巡查階段:40人分成10組,對繪出的紙圖進行外業巡視檢查,同時,用全站儀實測地形地物檢查點。對發現的問題,及時進行處理。這一階段還應在項目部組織下進行自查、復查。這一階段結束後,結束整個外業測量階段。
6、資料整理階段:數據處理中心投入5人,用5台計算機依據《數字化規范》進行圖幅數據加工;項目經理與技術負責人將控制點點之記、控制點成果表、技術總結、檢查報告等材料整理完善,對圖面進行100%檢查,最終提交圖件資料、文字資料及數據光碟。
整個工程項目從頭至尾,項目經理和技術負責人都應擔負起組織領導責任,加強技術指導和質量監督,經常向主管領導匯報工程進展情況,根據作業進度計劃和實際作業進度及時調整人員及設備配置,確保最終工程質量優良。

3. 地球的大小是如何測量出來的

是根據同一高度的物體,在相同的時間內,在地球的不同地方,影子的長度不同計算出來的。

據史料記載,最早測算地球大小的人是古希臘學者埃拉托色尼。埃拉托色尼受亞里士多德《天論》思想影響很深,深信大地為一球體。他依著自己博學的數理知識構想,在人類歷史上第一個測出了地球的大小。

他的測地方法是這樣的:

1、在地面上,他首先選擇了兩個南北基本上在一條經線上的城市——埃及的亞歷山大港(居北)和阿斯旺城(居南)。

2、然後在夏至(6月21日)這天的正午時分,對兩地水井的太陽照射情況同時加以觀測,發現在阿斯旺,陽光可以直射到井底,而在亞歷山大港,陽光只能照到井壁,光線與井壁的直立方向有一個7.2°的夾角。這個夾角的產生不是別的,正是因為亞歷山大港和阿斯旺城兩地間的地面呈曲面(地球球面的一部分)所致。

3、埃拉托色尼根據商隊在通過兩城時在路上所用的時間,算出了兩地的距離,其值為5000斯台地亞(古埃及的一種長度單位)。既然亞歷山大港和阿斯旺大體位於同一經線,它們這間又存在著7.2°的差角(相當於整個圓周角360°的1/50),根據幾何定理,埃拉托色尼求出了地球的圓周長:

4、據考證,大約10斯台地亞相當於1英里或1.609公里。250000斯台地亞則約相當於40225公里,這個數值,和目前測量的經線圈長度(40008.6公里),已經是較接近了。埃拉托色尼當時是把地球作為正球體(半徑都相等)來考慮的,故有了經線圈的長度,就可以求出地球的半徑,以及地球的體積大小。

公元723年,我國唐代天文學家一行(張遂),曾指導測量隊,在河南省黃河南北的平原地帶也進行了一次大規模的測地工作,測得緯度一度的距離為唐制351里50步。此距離與現代理論算出的僅差20.7公里。堪稱為是世界上最早的地球緯度一度弧長的測量。

隨著科學技術的發展,人類的測地方法日臻完善。在現代,除用大地測量方法外,科學家們還可通過測量人造衛星軌道,將更精確地測定地球的大小。

從1980年起,國際上所採用的地球大小參考數值(如赤道半徑值為6378137米,地球扁率為1/298.257),就是通過大地測量、人造衛星測量等互相配合,而取得的地球大小精確值。

地球的體積,也並非是恆定的。隨著時間的演進,它會發生「膨脹」。據科學家推算,地球從誕生至今,半徑已增長了1/3。地球變大的原因是多方面的,其中原因之一,是與地內物質上涌,促使地球上部物質增多有關。因此,地球體積的測定,也絕不是一勞永逸的。

地球的體積測算出來以後,我們可以根據萬有引力定律計算出地球的總質量,同樣可以算出地球平均密度等等相關數據。

(3)能測量到大地的方法擴展閱讀

地球(Earth)是太陽系八大行星之一,按離太陽由近及遠的次序排為第三顆,也是太陽系中直徑、質量和密度最大的類地行星,距離太陽1.5億公里。地球自西向東自轉,同時圍繞太陽公轉。現有40~46億歲,有一個天然衛星——月球,二者組成一個天體系統——地月系統。46億年以前起源於原始太陽星雲。

地球赤道半徑6378.137千米,極半徑6356.752千米,平均半徑約6371千米,赤道周長大約為40076千米,呈兩極稍扁赤道略鼓的不規則的橢圓球體。地球表面積5.1億平方公里,其中71%為海洋,29%為陸地,在太空上看地球呈藍色。

地球內部有核、幔、殼結構,地球外部有水圈、大氣圈以及磁場。地球是目前宇宙中已知存在生命的唯一的天體,是包括人類在內上百萬種生物的家園。

4. 衛星大地測量學的測量方法

衛星大地測量在原理上分為幾何法和動力法。將衛星作為高空觀測目標,由幾個地面站同步觀測,即可按三維三角測量法計算這些站的相對位置,實現遠距離的大地聯測。這種方法不涉及衛星的軌道運動,稱為衛星大地測量幾何法。如果利用衛星距地球較近的特點,將它作為地球引力場的敏感器進行軌道攝動觀測,就可推求地球形狀和引力場參數,同時可以精確計算衛星軌道和確定地面站的坐標。由於衛星沿著以地球質心為其焦點之一的橢圓軌道運行,所以這樣測定的地面站坐標是相對於地球質心的絕對位置。這種測量方法稱為衛星大地測量動力法。 原理如圖1。由地面上A、B兩站同步觀測至衛星S1的方向AS1和BS1,在另一時刻同步觀測至衛星S2的方向AS2和BS2,則由平面ABS1和ABS2的交線可確定A、B間的弦方向AB。在其他測站間重復上述觀測過程,即可得出由各測站間的弦方向所構成的空間三角網。如果再由地面測量或由地面至衛星的激光測距,提供出三角網的長度因子(即在空間三角網解算中決定長度的要素),就可以推算出各測站點的相對坐標。
60年代,很多國家曾用幾何法建立空間三角網和地面三角網的洲際聯測。其中規模較大的是美國國家大地測量局主持的世界人造衛星三角網聯測。它包括分布在全球的45個測站,網點間的距離為4000~4500公里,網的長度因子由長為1200~3500公里的 7條地面基線提供。這些基線分別位於北美、歐洲、非洲和澳大利亞,用電磁波測距儀測量。整個網經過平差後,點的坐標的中誤差平均為±4.7米,網的平均長度相對誤差為 ±5×10-7。 根據衛星在軌道上受攝動力的運動規律,利用地面站對衛星的觀測數據,可以同時計算衛星軌道根數、地球引力場參數和地面觀測站地心坐標。
地球引力、大氣阻力、日月引力、太陽光壓、地球潮汐(海潮、固體潮和大氣潮)等對衛星軌道都有影響,研究和測定衛星軌道在這些影響之下的變化,是衛星大地測量動力法的基礎。
如果地球是一個質量均勻分布的圓球,則地球對衛星的引力相當於假定地球質量集中於其中心時對衛星的引力。按開普勒(J.Kepler)的行星運動定律,這時衛星的軌道是一個不變化的橢圓,地球位於其焦點之一。這個軌道橢圓由6個軌道根數i、Ω、ɑ、e、ω和T來確定(圖2)。i為軌道傾角,即軌道平面同赤道平面的夾角;Ω為升交點的赤經,即衛星軌道投影到天球上,同天球赤道相交的兩點中,衛星由南向北通過赤道的那一點的赤經;ɑ和e分別為軌道橢圓的長半徑和偏心率;ω為近地點角距,即近地點到升交點的角距;T為衛星通過近地點的時刻;v為真近點角,即衛星到近地點的角距,有的文獻以它代替T作為軌道根數。這6個軌道根數中ɑ和e可確定軌道橢圓的形狀和大小,i和Ω確定軌道面相對於地球的空間位置,ω說明軌道橢圓在空間的定向,T是推算衛星位置的時間起點。
實際上,地球的質量分布極不均勻,它的形狀雖近似於一個旋轉橢球,但很不規則,因而地球引力場非常復雜。衛星在繞地球運行中,除受到地球不規則引力場的攝動外,還受到大氣阻力、日月引力、太陽光壓和地球潮汐等攝動力的作用,因而衛星軌道不是一個不變的橢圓,其形狀、大小和在空間的位置都在不斷地變化。任一瞬間同這個軌道相密切的橢圓稱密切橢圓。在攝動情況下,認為衛星軌道是隨時間變化的瞬時橢圓。
衛星的運動方程是一個非常復雜的微分方程,可按級數展開法求解。此法把某一時刻t0的密切橢圓軌道作為固定的參考軌道,而把時刻 t的密切橢圓軌道根數表示為參考軌道根數同攝動項之和。攝動項分為短周期項、長周期項和長期項。一般以地球引力位球諧函數展開式的二次帶諧系數作為一階小量,而按所達到的精度分為一階解和二階解。這種解法通稱為分析法。由於分析法公式較煩,近年來一般都採用數值積分法直接解衛星運動方程,或者採用半分析法與數值積分法相結合的方法,即短周期攝動用分析法計算,長期和長周期攝動用數值積分法計算。
地球引力位通常以球諧函數展開式表示,球諧函數的系數稱為地球引力場參數,其中同經度無關的系數稱為帶諧系數,同經度有關的系數稱為田諧系數。利用這些參數同觀測數據(方向、距離、距離差、距離變率和衛星至海洋面的高)之間的關系組成觀測方程,就可以同時推求出測站的地心坐標,衛星軌道根數和地球引力場參數。由於觀測方程中含有大量的待定參數,所以通常把軌道根數和大地測量參數(引力場參數和測站地心坐標)分開解算。
地球引力位的帶諧部分主要引起衛星軌道的長期和周期攝動,田諧部分只產生幅度較小的短周期攝動。從衛星運動理論知道,地球引力位的偶次帶諧系數引起衛星軌道升交點赤經和近地點角距的長期攝動,奇次帶諧系數引起軌道偏心率和傾角的長周期攝動。故一般根據長期觀測所獲得的升交點赤經和近地點角距的變化推求偶次帶諧系數,而根據軌道偏心率和傾角的變化推求奇次帶諧系數。計算時必須事先消除非地球引力場的各種攝動因素的影響。為了削弱觀測方程系數之間的相關性,須選取不同傾角的衛星進行觀測,並須經過一定時間的觀測,積累幾個月或幾個星期的衛星觀測數據,這樣就可單獨求定帶諧系數。
田諧系數的求定比較困難,因為它們引起的攝動周期較短,振幅也較小。只有由全球分布均勻的若干測站,對不同軌道的衛星進行精密觀測,才能求定田諧系數。這時觀測方程中,帶諧系數一般可作為已知參數;待定參數除了田諧系數外,還包括測站坐標和衛星軌道根數等項。
由於衛星觀測數據目前只能反映地球引力場的全球特徵,而地面重力測量數據可提供引力場的精細結構,所以只有把兩種觀測數據綜合解算,才能求得地球引力場比較精確的模型。

閱讀全文

與能測量到大地的方法相關的資料

熱點內容
古代三更計算方法 瀏覽:743
跳減肥繩的正確方法與技巧 瀏覽:775
宜興紫砂壺的正確使用方法 瀏覽:27
催花王的使用方法 瀏覽:304
解凍母乳正確食用方法 瀏覽:499
dc面膜的使用方法 瀏覽:758
社會調查研究方法圖表分析題 瀏覽:961
華為手機快捷鍵拍照在哪裡設置方法 瀏覽:389
低頭頸椎病的症狀和治療方法 瀏覽:168
住樓房如何冬儲大白菜的儲存方法 瀏覽:402
黃金馬桶的製作方法視頻 瀏覽:450
夜釣草魚調漂技巧及方法 瀏覽:452
450除以45簡便方法怎麼寫 瀏覽:657
狗肺的功效與作用及食用方法 瀏覽:225
顱腦增生的症狀和治療方法 瀏覽:367
老人睡不著覺有什麼治的方法嗎 瀏覽:400
聯想電腦與顯示器的連接方法 瀏覽:404
小米5s的mac設置在哪裡設置方法 瀏覽:413
led電子屏安裝方法 瀏覽:805
如何找到學習方法 瀏覽:134