導航:首頁 > 安裝方法 > 配方法步驟

配方法步驟

發布時間:2022-01-07 15:48:42

Ⅰ 配方法的詳細步驟

2X^2-4X+1
=2(X^2-2X+1-1)+1
=2(X-1)^2-2+1
=2(X-1)^2-1。

以上就是二次三項式的配方。

Ⅱ 配方法的步驟(詳解)

ax²+bx+c=0
x²+bx/a=-c/a
x²+bx/a+[b/(2a)]²=b²/(4a²)-c/a
[x+b/(2a)]²=(b²-4ac)/(4a²)
x+b/(2a)=±√(b²-4ac)/(2a)
x=[-b±√(b²-4ac)]/(2a)

Ⅲ 配方法詳細步驟


如圖

Ⅳ 數學配方法是什麼配方法的步驟有哪些

通過配成完全平方式的方法,得到一元二次方程的根的方法.這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式.同時也是數學一元二次方程中的一種解法。
配方法的步驟
1.轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式
2.移項:常數項移到等式右邊
3.系數化1:二次項系數化為1
4.配方:等號左右兩邊同時加上一次項系數一半的平方
5.用直接開平方法求解 整理 (即可得到原方程的根)
代數式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)

Ⅳ 配方法 詳細步驟 謝謝啦

4x²+16x+16=9

x²+4x+4=9/4

(x+2)²=9/4

x+2=±3/2

x=-2±3/2

x1=-1/2

x2=-7/2

概述

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y2= (b/2a)2,可得:

這個表達式稱為二次方程的求根公式。

幾何學的觀點

考慮把以下的方程配方:

方程的配方是在方程的兩邊同時加上一次項系數的一半的平方,而函數是在加上一次項系數一半的平方後再減去一次項系數一半的平方

對於任意的a、b(這里的a、b可以代指任意一個式子,即包括超越式和代數式),都有

(一般情況下,這個公式最好用於對x²+y²+z²進行配方)

配方時,只需要明確要進行配方兩項或三項,再套用上述公式即可。

解方程

在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

求最值

【例】已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。

分析:將y用含x的式子來表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4.

證明非負性

【例】證明:a²+2b+b²-2c+c²-6a+11≥0

解:a²+2b+b²-2c+c²-6a+11=(a-3)²+(b+1)²+(c-1)²,結論顯然成立。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12

=(x-2)²-16

=(x -6)(x+2)

求拋物線的頂點坐標

【例】求拋物線y=3x²+6x-3的頂點坐標。

解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6

所以這條拋物線的頂點坐標為(-1,-6)

Ⅵ 配方法步驟

x^2+3x+1
=x^2+2x+1+x
=(x+1)^2+x

Ⅶ 二元一次方程配方法的步驟

1.配方法:將一元二次方程配成(x+m)²=n的形式,再利用直接開平方法求解的方法;

2.用配方法解一元二次方程的步驟:①一般形式:把原方程化為一般形式;②二次項系數化為1:方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;③配方:方程兩邊同時加上一次項系數一半的平方;④完全平方:把左邊配成一個完全平方式,右邊化為一個常數;⑤開方:方程兩邊同時開平方,得到一元一次方程;⑥得解:解一元一次方程,得出原方程的解;

3.說明:配方之後形成「左平方右常數」的形式,如果方程右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程沒有實數根;配方法的理論依據是——完全平方公式a²+b²+2ab=(a+b)²;配方法的關鍵是——先將一元二次方程的二次項系數化為1,然後在方程兩邊同時加上一次項系數一半的平方;

4.舉例:

配方法解方程

5.有不明白的地方歡迎追問!

Ⅷ 配方法的步驟

1、先整理成未知數在方程的一邊,常數項在方程的另一邊
即ax²+bx=-c

2、 將兩次項系數化為1
x²+bx/a=-c/a

3、兩邊同時加上一次項系數的一半的平方
x²+bx/a+b²/4a²=b²/4a²-c/a

4、右邊寫成完全平方式
(x+b/2a)²=(b²-4ac)/4a²

Ⅸ 數學配方法的基本步驟是什麼

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。

等式兩邊加上y2 = (b/2a)2,可得:這個表達式稱為二次方程的求根公式。

解方程:在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

求最值

【例】已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。

分析:將y用含x的式子來表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4。

Ⅹ 配方法。過程。

閱讀全文

與配方法步驟相關的資料

熱點內容
華碩怎麼控制無線網開關在哪裡設置方法 瀏覽:784
各種飛行訓練方法視頻 瀏覽:816
如何在家做餃子皮簡單方法 瀏覽:84
測量導熱系數的方法及適用條件 瀏覽:363
原塘釣草魚最佳方法 瀏覽:300
如何自檢三極體測量好壞方法 瀏覽:808
牆體網線連接方法 瀏覽:432
男前列腺怎麼治療方法 瀏覽:945
採暖不熱用什麼方法解決 瀏覽:6
炒股邏輯技巧與方法 瀏覽:934
油管壓力表補心的安裝方法 瀏覽:377
作業怎麼做的快用什麼方法 瀏覽:133
有什麼去蟑螂方法 瀏覽:350
空手決斗解決方法 瀏覽:948
uv254檢測方法 瀏覽:910
如何去掉白發最快方法 瀏覽:966
糖蒜淹制方法視頻 瀏覽:244
芹黃食用方法 瀏覽:975
科學的新房除甲醛和苯最快速方法 瀏覽:816
育兒觀最佳方法 瀏覽:73