㈠ 電纜故障測試儀測試方法有哪些
電纜故障的類型和判斷,無論是高壓電纜還是低壓電纜,在施工安裝和操作過程中,往往由於短路、過載、絕緣老化或外力而導致故障。它可以概括為電纜接地故障,短路,分為三類,它們是以下類型的故障方面:芯或三芯電纜的兩線接地;兩相芯間短路;三相芯線完全短路;換行符或多相芯破損。對於直接短路或斷線故障可採用萬用表直接測量和判斷,對於間接短路和接地故障,可以用電力電纜故障測試儀測量芯線間的絕緣電阻或芯線對地的絕緣電阻確定故障的類型後,找到故障點不是一件容易的事情,按照我的經驗,介紹幾種方法來查找故障點,以供參考。
找出電纜故障點:
(1)探測:電纜故障測試儀探測被調用以找到在根據聲音電纜放電故障,對於高壓電纜對閃絡放電絕緣層的方法更為有效。
(2)橋法:橋的方法是使用橋臂測量電纜芯的直流電阻,並准確測量電纜的實際長度,按照與電阻從計算出的比例關系的電纜長度點故障。在該方法中,如果電纜芯線間的接觸電阻小於1Ω,誤差一般不超過3m,如果故障點的接觸電阻大於1Ω,則可以採用高壓燒穿的方法將電阻降低到1Ω以下,然後用該方法測量。
(3)電容電流測定:電纜在操作中,在芯線之間,芯線到地存在的電容是均勻分布的,並且電容線性地正比於電纜長度,這是基於測定的測量原理的電容器電流,非常准確地測得的電纜線斷線故障。
(4)零位法:零位法稱為電位比較法,適用於長度較短的電纜芯線接地故障。方法簡單准確,不需要精確的儀器和復雜的計算測量原理如下:電纜故障芯線與等長比較線並聯時,電源在均電阻線的兩端並聯相反,兩點之間的電位差必須為零對應的點,由於微壓計的負極接地,具有電纜故障點等電位,因此,當微壓計的正極在比較導線上移動到指示值為零的點到故障點等電位時,即故障點的對應點。
回復者:華天電力
㈡ 如何測量高壓電壓
高壓側測量方法有以下幾種:
1.用電壓互感器測量
在試驗變壓器高壓側與被試品並聯一測量用電壓互感器,在電壓互感器低壓二次側接電壓表或示波器測量電壓,然後根據所測電壓值和電壓互感器的變比換算出高壓側電壓。一般用電壓互感器在0.5級以上。這種測量方法測量簡單,准確度高,但測量電壓不宜太高。測量電壓太高則要求電壓互感器的一次電壓高,使製造出的電壓互感器體積大,成本高,且不宜攜帶。
2.用靜電壓表測量
用靜電壓表可以方便地測量交流高壓的有效值。測量時,將靜電電壓表與被試品並接,可直接測量出被試品的高壓電壓。靜電電壓表的結構如圖1-2所示。
圖1-2 國產Q4-V型靜電電壓表結構圖
靜電電壓表能耐受的電壓由兩級間的距離及固定高電壓電極的絕緣蜘蛛表面的放電電壓決定。改變電極間距離,能改變策測量電壓范圍,所以頻率高達1MHz的電壓。
靜電電壓表兩極間有絕緣介質(空氣),電容量極小(10~30pF),因此阻抗較大,測量時幾乎不改變被試品上的電壓。該表還可以用來測量感應電壓表。
靜電電壓表的缺點是:額定電壓100V及以上的靜電電壓表的電極暴露在外面,無屏蔽密封措置,現場使用時受風、天氣、外界電磁場干擾影響較大,現場不宜使用,多用於試驗室內。
3.用球隙測量
在交流耐壓試驗時,球隙不僅可以作保護用,還可以作測量用。測量球隙由一對相同直徑的金屬球構成。
球隙測量高壓的原理是在一定大氣條件下,一定直徑的銅球,球隙間的放電電壓決定於球隙距離。因此可以用球隙來直接測量交流高壓、沖擊高壓的峰值。附錄四球隙放電標准表給出了不同球徑球隙的放電電壓與球隙距離的關系。
用球隙測量高壓時,只有當球隙放電時,才能從表中查得電壓。每次放電必須跳閘,放電時可能產生振盪,也可能引起過電電壓,所以球隙測量電壓不太方便。現場及試驗實際使用時,常用球隙來校訂別的測量儀器的測量結果,即做校訂曲線。有了校訂曲線,就可以從儀表的指示讀數,隨時知道升壓過程中的電壓值。實際校訂時的接線圖如圖1-3所示。
圖1-3 用球隙來測定試驗變壓器校訂曲線的接線
F-球隙;CX-被試品
圖中R1是保護變壓器用的防振電阻,限制被試品或球隙擊穿時流過變壓器的短路電流。R2的作用有兩方面:一是限制球隙放電時流過球級的短路電流,以免燒傷球級;二、是阻尼試驗迴路出現局部放電時連接電感與球隙電容和被試品電容等所產生的高頻振盪。
圖1-4 試驗變壓器的校訂曲線
具體校訂過程如下:接上被試品,按圖1-3接線,電壓逐步提高,球隙距離逐級調大,在各種球隙距離下放電時,記下相應低壓側電壓表讀數,查表並經過一定的計算可求得每種球隙距離下的放電電壓。用該電壓和低壓側電壓表讀數繪出的曲線如1-4所示。這就是校訂曲線。實際上該曲線表明了在一定負載下試驗變壓器的一、二次電壓關系。做校訂曲線時的電壓要求低於或接近於試驗電壓,一般允許做到試驗電壓的80%,然後可用外推法,把曲線延伸到所需值,推算出試驗電壓時的低壓側電壓表讀數。把球隙距離調到相應試驗電壓值的1.1~1.2倍,作為保護間隙,然後推算出的低壓側電壓表讀數升壓即可。氣體間隙的放電電壓受大氣條件的影響,因而對現場測量結果應根據大氣條件進行校訂。
㈢ 操作沖擊耐壓試驗是怎麼進行的
沖擊耐壓試驗,熟悉沖擊電壓發生器的工作原理與結構。掌握沖擊電壓發生器的使用方法。掌握沖擊電壓的測量方法。學習沖擊電壓波形的調試方法。學習沖擊電壓發生器效率的測量與計算。計算所用沖擊電壓發生器的負載能力。改變沖擊電壓發生器的級數、試品電容,觀察沖擊電壓波形的變化。測量並計算沖擊電壓發生器的使用效率。用升降法確定被試品羊角間隙的50%放電電壓。用多級法確定被試品羊角間隙的50%放電電壓。(或者用簡單法即:針對某試品在某確定電壓下沖擊十次中有4~6次放電即可稱為該電壓是該試品的50%放電電壓)。沖擊耐壓試驗的意義:沖擊電壓發生器是產生脈沖波的高電壓發生裝置。
沖擊電壓試驗是電力設備高壓試驗的基本項目之一。沖擊電壓試驗即可用於研究電力設備遭受大氣過電壓(雷擊)時的絕緣性能,又可用於研究電力設備遭受操作過電壓時的絕緣性能。同時,在進行電磁兼容研究及放電機理研究等許多方面也都需要進行沖擊電壓試驗。沖擊耐壓試驗的特點一般沖擊電壓發生器要滿足兩個要求:首先要能輸出幾十萬伏到幾百萬伏的電壓,同時該電壓要有一定的波形。為了產生幅值很高的脈沖電壓,目前仍採用1923年發明的Marx多級迴路,如圖3-3-1所示。該迴路中3級電容器以並聯的方式經過高阻RL被直流電壓源充電到U0,然後經過3級球間隙f的同步放電被串聯起來,從而在試品上獲得將近3 U0的脈沖電壓。雖然在實際使用中的Marx迴路有多種不同的迴路接線,但基本原理相同。根據實測,雷電波是一種非周期性脈沖,它的參數具有統計性。它的波前時間(約從零上升到峰值所需時間)為0.5~10μs,半峰值時間(約從零上升到峰值後又降到峰值一半時所需時間)為20~90μs,累積頻率為50%的波前和半峰值時間約為1.0~1.5μs和40~50μs。操作沖擊電壓波的持續時間比雷電沖擊電壓波長得多,形狀比較復雜,而且它的形狀和持續時間,隨線路的具體參數和長度的不同而有異,不過目前國際上趨向於用一種幾百微妙波前和幾千微秒波長的長脈沖來代表它。
㈣ 電纜故障測試儀的沖擊高壓閃絡試驗方法要怎麼操作
直流高壓閃絡法
(1)首先檢查觸發工作方式選擇開關位置於閃絡位置,傳播速度應為被測電纜的波速值。
(2)適用范圍:故障點電阻很高,尚未形成穩定通道,在一定的直流高壓作用下,可產生閃絡放電故障的電力電纜(即高阻閃絡性故障)。預防性擊穿電壓試驗一般採用此法測試。
(3)直流高壓閃絡故障持續時間有長有短,短的僅閃絡幾次即消失。直閃法波形簡單,容易判斷,故障測量的准確度較高,因此應珍惜該過程的測試。
(4)直閃法的測試原理。在實際測試時利用高壓設備和本公司高壓測試裝置,按圖 8 所示線路連接。
T1 調壓器 2KVA
T2 高壓變壓器 0~50KV,2KVA
D 高壓磚硅堆 反向電壓 100KV,正向電流 100mA
C 高壓電容器 0.1μF>10KV
交直流電壓表:0~300V,直流電流表:100mA
放電球隙內,電阻阻值:30±20/5kΩ
輸出電阻:500Ω±10%
(5)接通儀器電源,屏幕出現視窗。然後逐步調節調壓器升高測試電壓,當故障點產生閃絡現象時,毫安表中電流突然增大,電壓表指針抖動。
(6)高壓直閃法的試驗電壓高幾千伏至幾十千伏,應遵守高壓操作規程。應將高壓試驗設備的接地端,放電球隙的地線端和儀器的地線直接接至電纜鉛包,鉛包要可靠地接大地。使用前應檢查高壓測試裝置內的水阻及分壓電阻是否正確。
㈤ 高電壓技術的試驗方法
進戚孝行高電壓試驗需要有正確的試驗方法,如耐壓試驗、介質損耗試驗、局部放電試驗等。高壓電工設稿仔伏備外絕緣的介電強度,受氣壓、溫度、濕度、風沙、污穢、雨水、射線等因素的影響,需要有不同條件下的換演算法和等效的試驗方法。高電壓測量裝置和測量技術是正確進行高電壓試驗的基礎。對不同類型的高電壓需採用不同的測量裝置。如測量直流電壓或低頻交流電壓的有效值用高壓靜電電壓表;測單次短脈沖(微秒或納秒級)用高壓示波器,測高電壓下的脈沖大電流一般用羅戈夫斯基線圈。此外常用的高電壓測量裝置還有各種分壓器、分流器、局部放電儀等鍵攜。60年代以來,光電測試技術引入高電壓領域,它將高電位端的量(如高壓迴路的電流)轉變為光信號,通過光纖傳送到低電位端的接受儀器,再將光信號轉為電信號,避免了高電壓傳到低電壓的測量系統而引起的危險,以及電磁場對低電壓測量系統的干擾。
㈥ 電纜故障測試儀測試方法是怎麼樣的,有哪些
1.電纜故障測試儀之高壓沖擊閃絡法
電纜故障測試儀的高壓沖擊閃絡法可以測試電纜的高阻泄漏故障、高阻閃絡故障、低阻短路故障和斷線故障,是一種高效、可靠、應用廣泛的電纜故障檢測手段;高壓沖擊閃絡的方法是在故障電纜的開始處施加沖擊高電壓,以斷開與電弧的故障點。測試信號採用故障點擊瞬間的電壓突變。這個信號被觀察到在故障點和電纜開始之間。採用電流采樣法採集測試信號,電流采樣方法根據電磁感應原理,利用電流互感器採集地線上的電流信號,得到電纜中的電波電流反射信號。高壓發電機和市電之間沒有電氣關系,所以特別安全。電流采樣法得到的波形具有清晰的反射波拐點,特別有利於故障距離分析和定位,但電流采樣法的測試波形比較復雜,不同類型、不同長度、不同故障距離、不同脈沖高壓的波形變化很大,往往與標准波形相差甚遠,在不存在波形規則情況下,通常會發生誤判斷的誤判。
2.電纜故障測試儀之低壓脈沖測試法
電纜故障測試儀的低壓脈沖測試方法是基於電纜中的低壓脈沖向前移動,在出現故障點時會引起脈沖波的反射,利用所觀測的傳輸脈沖與反射回波脈沖之間的時間差和電纜中的線路波的傳輸速度來計算故障距離。電纜故障測試儀器的橋接法可以直接確定電纜故障點是開路還是短路,並可以直接測量測試端到故障點的距離,然而,對於高阻泄漏故障,高電阻閃絡故障的低電壓脈沖規則不適用。
3.電纜故障測試儀之二次脈沖法
由於上述測試方法的不足,需要開發一種既准確又實用的新測試方法。因此,提出了二次脈沖法。二次脈沖法的優點是將高壓閃絡法中的復雜波形變為非常簡單易掌握的低壓脈沖法短路故障試驗波形,任何受過訓練的人都能快速、准確地測量斷層。
回復者:華天電力
㈦ 誰有高頻電壓的測量方法,小弟急求!!!方法最好詳細點、簡單點。
1.球隙法測量高電壓。
是試驗室比較常用的方法之一。空氣在一定電場強度下,才能發生碰撞游離。均勻電場下空氣間隙的放電電壓與間隙距離具有一定的關系。可以利用間隙放電來測量電壓,但絕對的均勻電場是不易做到的,只能做到接近於均勻電場。測量球隙是由一對相同直徑的金屬球所構成。加壓時,球隙間形成稍不均勻電場。當其餘條件相同時,球間隙在大氣中的擊穿電壓決定於球間隙的距離。對一定球徑,間隙中的電場隨距離的增長而越來越不均勻。被測電壓越高、間隙距離越大。要求球徑也越大。這樣才能保持稍不均勻電場。
其優點是:可以測量穩態高電壓和沖擊電壓的幅值,是直接測量超高壓的重要設備。結構簡單,容易自製或購買,不易損壞。有一定的准確度,測量交流及沖擊電壓時准確度在3%以內。
球隙法測量的缺點是:測量時必須放電放電時將破壞穩定狀態可能引起過電壓。氣體放電有統計性。數據分散,必須取多次放電數據的平均值,為防止游離氣體的影響,每次放電間隔不得過小。且升壓過程中的升壓速度應較緩慢,使低壓表計在球隙放電瞬間能准確讀數,測量較費時間。實際使用中,測量穩態電壓要作校訂曲線,測量沖擊電壓要用50%放電電壓法。手續都較麻煩。被測電壓越高,球徑越大,目前已有用到直徑為±3m的銅球,僅本身越來越笨重,而且影響建築尺寸。
2.靜電壓表法測量
原理是加電壓於兩電極,由於兩電極上分別充上異性電荷,電極就會受到靜電機械力的作用,測量此靜電力的大小或是由靜電力產生的某一極板的偏移(或是偏轉)就能夠反映所加電荷的大小。
靜電電壓表的優點是它基本上不從電路里吸取功率,或是只吸取極小量的功率。
但是靜電電壓表的測量也存在著明顯的缺點:
(1)容易受到外界電場的干擾,同時靜電電壓表不能在有風的環境中使用,否則活動電
極會被風吹動,造成較大的測量誤差。
(2)靜電電壓表的准確等級通常在1.5級左右,有一定的測量誤差。若其安放位置或高壓引線的路徑處置不當,往往會造成顯著的誤差,另外它攜帶不方便。否則活動電極會被風吹動,造成較大的測量誤差。所以一般被用於實驗室里測量100~250kV及以下的電壓。
3.峰值電壓表
是用來測量交流電壓幅值的。目前應用較多的有兩種方法:一種是利用電容電流整流來測量電壓峰值:另一種是利用電容上的整流充電電壓來測量電壓峰值。
4.分壓器
是一種將高電壓波形轉換成低電壓波形的轉換裝置,它由高壓臂和低壓臂組成。輸入電壓加在整個裝置上,而輸出電壓則取自低壓臂。通過分壓器可以解決低壓儀器測量高壓峰值以及波形的問題。
5.光測高電壓技術