甲烷檢測儀是一種檢測甲烷濃度的儀器,是沼氣建設中國家重點支持配置的儀器。甲烷檢測儀在村級服務網點的應用主要包括:沼氣池項目驗收,沼氣池故障診斷,沼氣灶具故障診斷,沼氣池和沼氣管路氣體泄露檢測,沼氣池維修。其中前三者的目的是測量高濃度(40%~80%)的甲烷,後兩者主要測量低濃度(0~5%為甲烷的低爆炸極限)的甲烷,因此合理選擇沼氣分析儀,對於沼氣池驗收、病池診斷、灶具故障診斷、管路泄露檢測等具有重要意義。
沼氣成分分析以及沼氣泄露報警的檢測方法主要有:熱催化燃燒方法、熱導元件方法和紅外測量方法。
(1)熱催化燃燒方法
檢測甲烷泄露最有效、最經濟的方法是催化燃燒(黑白元件)方法。兩只元件用鉑絲加熱到400℃,當空氣中含有可燃氣體時,測量元件在催化劑的作用下,元件表面發生催化反應,使溫度上升,通過測量兩只元件的溫差就能判斷出甲烷的含量。但是,載體催化元件有個致命缺陷,只能檢測濃度為4%以下的甲烷氣體,當空氣中的瓦斯濃度超過5%時,元件就會發生「激活」現象,造成永久損壞。
(2)熱導元件方法
不同氣體的導熱系數存在差別,熱導元件檢測方法就是根據氣體的這一特性,來確定氣體的體積濃度。沼氣的主要成分是甲烷和CO2,被測沼氣的導熱系數由甲烷和CO2共同決定。對於彼此之間無相互作用的多組分氣體,其導熱系數可近似地認為是各組分導熱系數按組成含量的加權平均值。根據沼氣的導熱系數與各組分導熱系數之間的關系,可實現沼氣成分的多組分氣體的含量分析。但是該感測器對於低濃度測量有很大局限性,低於5%的甲烷無法測量,如果用於泄露報警將會造成很大的誤差。
(3)紅外測量方法
異種原子構成的分子在紅外線波長區域具有吸收光譜,其吸收強度遵循朗伯—比爾定律。當對應某一氣體吸收波長特徵的光波通過被測氣體時,其強度將明顯減弱,強度衰減程度與該氣體濃度有關。由於紅外沼氣分析方法採用物理原理,分析氣體不與感測器發生反應,因此壽命很長,可以達到10年以上。該類型感測器不僅可以用於沼氣泄露的低濃度報警,也可以用於高濃度的沼氣成分測量。
在選擇配置時需要考慮儀器的儀器功能、儀器質量保障體系、使用壽命等因素。在利用紅外、熱導、熱催化原理的甲烷檢測儀器中,可優先選擇紅外方法的儀器。如果僅測量沼氣成分或者檢測泄露,可以考慮基於熱導和熱催化原理的儀器。
『貳』 氣體檢測的方法都有哪些
氣體檢測的方法很多,目前在工業領域都是通過氣體感測器進行氣體檢測,通常基於以下幾種原理:
1. 催化燃燒感測器:一般針對可燃性氣體,如烷類、醇類等,感測器消耗電流較大,其內部需要保持高溫,氣體在高溫下被催化燃燒,從而使感測部件的電阻發生變化。測量精度可以達到1%LEL(爆炸下限)
2 電化學原理:通過氣體與電解液的反應,在電極上產生微弱電流,一般針對CO\H2S\SO2\CL2\NH3\NO\NO2\COCL2\HCN等毒性氣體,電化學感測器的氣體選擇性不是很強,一般都會有交叉反應。常用的CO/H2S感測器價格比較便宜(價格為幾十元到上百元)。普通電化學感測器測量精度可以達到ppm級別,四電極電化學感測器測量精度可以達到ppb級別(價格為數千元,較昂貴)
3 紅外光學:CH4\CO2等對某一波段的紅外光有吸收能力,通過吸收程度的不同計算氣體的濃度(民品價格為100元左右,工業品價格為數百到數千元)
4. PID法:PID是採用一個紫外燈來離子化樣品氣體,從而檢測VOC氣體的濃度。當樣品分子吸收到高紫外線能量時,分子被電離成帶正負電荷的離子,這些離子被電荷感測器感受到,形成電流信號。(工業品價格為數百到數千元)
5. 氣相色譜/質譜(GC/MS):具有較好的氣體選擇性,價格較為昂貴,一般為數萬到數十萬元。
南京更佳電子提供相關電路檢測套件,如需樣品可登陸該公司網站與相關聯系人聯系
『叄』 四合一氣體檢測儀使用方法
在使用四合一氣體檢測儀之前先得按下電源按鈕,等待氣體檢測儀完成開機自檢,聽到蜂鳴器聲音之後即可正常操作使用,在檢測氣體的時候,用戶一定要注意等到所檢測的氣體讀數穩定之後才可記錄氣體濃度的數值。
『肆』 有毒有害氣體的檢測是怎麼實現的
有毒有害氣體的檢測方法一般有如下幾種:
一、有毒有害氣體檢測方法之【氣相色譜法】
氣相色譜法適用於氫氣、氧氣、氮氣、氬氣、氦氣、一氧化碳、二氧化碳等無機氣體,甲烷、乙烷、丙烯及C3以上的絕大部分有機氣體的分析。氣相色譜儀主要由氣路系統、進樣系統、柱恆溫箱、色譜柱、檢測器和數據處理系統等組成。 用氣相色譜法分析標准氣體,要想獲得准確可靠的分析結果,首先必須建立分析方法,選擇合適的操作條件和操作技術。
二、有毒有害氣體檢測方法之【 非色散紅外分析法】
非色散紅外氣體分析器是利用不同的氣室和檢測器測量混合氣體中的一氧化碳、二氧化碳、二氧化硫、氨、甲烷、乙烷、丙烷、丁烷、乙炔等組分的含量。非色散紅外氣體分析器主要由紅外光源、試樣室、濾波器、斬波器、檢測器、放大器及數據顯示裝置組成。
三、有毒有害氣體檢測方法之微量氧分析儀】
微量氧分析儀:在高純氣體的分析中,幾乎所有的高純氣體中都要求准確測定其中微量氧的含量。由於大氣中含有大量的(21%)氧,准確測定高純氣體中微量氧乃至痕量氧,是氣體分析中的難點之一。
四、有毒有害氣體檢測方法之【化學發光法】
化學發光法是利用某些化學反應所產生的發光現象對組分進行分析的方法,具有靈敏度高,選擇性好,使用簡單方法、快速等特點。適用硫化物、氮氧化物、氨等標准氣體的分析。
五、有毒有害氣體檢測方法之【微量水分析儀】
量水分也是評價高純氣體質量的主要指標之一。幾乎所有的高純氣體都對水分有嚴格的要求,准確測量和嚴格控制高純氣體中水分含量,才能保證高純氣體的質量。
『伍』 如何測空氣中一氧化碳濃度
目前普遍採用的是電化學的檢測方法。
最早的電化學感測器可以追溯到20世紀50年代,當時用於氧氣監測。到了20世紀80年代中期,小型電化學感測器開始用於檢測PEL范圍內的多種不同有毒氣體,並顯示出了良好的敏感性與選擇性。目前,為保護人身安全起見,各種電化學感測器廣泛應用於許多靜態與移動應用場合。
工作原理
電化學感測器通過與被測氣體發生反應並產生與氣體濃度成正比的電信號來工作。典型的電化學感測器由感測電極(或工作電極)和反電極組成,並由一個薄電解層隔開。
氣體首先通過微小的毛管型開孔與感測器發生反應,然後是憎水屏障,最終到達電極表面。採用這種方法可以允許適量氣體與感測電極發生反應,以形成充分的電信號,同時防止電解質漏出感測器。
穿過屏障擴散的氣體與感測電極發生反應,感測電極可以採用氧化機理或還原機理。這些反應由針對被測氣體而設計的電極材料進行催化。
通過電極間連接的電阻器,與被測氣濃度成正比的電流會在正極與負極間流動。測量該電流即可確定氣體濃度。由於該過程中會產生電流,電化學感測器又常被稱為電流氣體感測器或微型燃料電池。
在實際中,由於電極表面連續發生電化發應,感測電極電勢並不能保持恆定,在經過一段較長時間後,它會導致感測器性能退化。為改善感測器性能,人們引入了參考電極。
參考電極安裝在電解質中,與感測電極鄰近。固定的穩定恆電勢作用於感測電極。參考電極可以保持感測電極上的這種固定電壓值。參考電極間沒有電流流動。氣體分子與感測電極發生反應,同時測量反電極,測量結果通常與氣體濃度直接相關。施加於感測電極的電壓值可以使感測器針對目標氣體。
電化學感測器包含以下主要元件:
A. 透氣膜(也稱為憎水膜):透氣膜用於覆蓋感測(催化)電極,在有些情況下用於控制到達電極表面的氣體分子量。此類屏障通常採用低孔隙率特氟隆薄膜製成。這類感測器稱為鍍膜感測器。或者,也可以用高孔隙率特氟隆膜覆蓋,而用毛管控制到達電極表面的氣體分子量。此類感測器稱為毛管型感測器。除為感測器提供機械性保護之外,薄膜還具有濾除不需要的粒子的功能。為傳送正確的氣體分子量,需要選擇正確的薄膜及毛管的孔徑尺寸。孔徑尺寸應能夠允許足量的氣體分子到達感測電極。孔徑尺寸還應該防止液態電解質泄漏或迅速燥結。
B. 電極:選擇電極材料很重要。電極材料應該是一種催化材料,能夠執行在長時間內執行半電解反應。通常,電極採用貴金屬製造,如鉑或金,在催化後與氣體分子發生有效反應。視感測器的設計而定,為完成電解反應,三種電極可以採用不同材料來製作。
C. 電解質:電解質必須有夠促進電解反應,並有效地將離子電荷傳送到電極。它還必須與參考電極形成穩定的參考電勢並與感測器內使用的材料兼容。如果電解質蒸發過於迅速,感測器信號會減弱。
D. 過濾器:有時候感測器前方會安裝洗滌式過濾器以濾除不需要的氣體。過濾器的選擇范圍有限,每種過濾器均有不同的效率度數。多數常用的濾材是活性炭,如圖5所示。活性炭可以濾除多數化學物質,但不能濾除一氧化碳。通過選擇正確的濾材,電化學感測器對其目標氣體可以具有更高的選擇性。
電化感測器的製造方法多種多樣,最終取決於要檢測的氣體和製造商。然而,感測器的主要特性在本質上非常相似。以下介紹電化感測器的一些共同特性:
1.在三電極感測器上,通常由一個跳線來連接工作電極和參考電極。如果在儲存過程中將其移除, 則感測器需要很長時間來保持穩定並准備使用。某些感測器要求電極之間存在偏壓,而且在這種情況下,感測器在出廠時帶有九伏電池供電的電子電路。感測器穩定需要30分鍾至24小時,並需要三周時間來繼續保持穩定。
2.多數有毒氣體感測器需要少量氧氣來保持功能正常。感測器背面有一個通氣孔以達到該目的。建議在使用非氧氣背景氣應用場合中與製造商執行復檢。
3.感測器內電池的電解質是一種水溶劑,用憎水屏障予以隔離,憎水屏障具有防止水溶劑泄漏的作用。然而,和其它氣體分子一樣,水蒸汽可以穿過憎水屏障。在大濕度條件下,長時間暴露可能導致過量水分蓄積並導致泄漏。在低潮濕條件下,感測器可能燥結。設計用於監控高濃度氣體的感測器具有較低孔率屏障以限制通過的氣體分子量,因此它不受濕度影響,和用於監控低濃度氣體的感測器一樣,這種感測器具有較高孔率屏障並允許氣體分子自由流動。
壓力與溫度
電化學感測器受壓力變化的影響極小。然而,由於感測器內的壓差可能損壞感測器,因此整個感測器必須保持相同的壓力。電化學感測器對溫度也非常敏感,因此通常採取內部溫度補償。但最好盡量保持標准溫度。
一般而言,在溫度高於25°C時,感測器讀數較高;低於25°C時,讀數較低。溫度影響通常為每攝氏度0.5%至1.0%,視製造商和感測器類型而定。
選擇性
電化學感測器通常對其目標氣體具有較高的選擇性。選擇性的程度取決於感測器類型、目標氣體以及感測器要檢測的氣體濃度。最好的電化學感測器是檢測氧氣的感測器,它具有良好的選擇性、可靠性和較長的預期壽命。其它電化學感測器容易受到其它氣體的干擾。干擾數據是利用相對較低的氣體濃度計算得出。在實際應用中,干擾濃度可能很高,會導致讀數錯誤或誤報警。
預期壽命
電化學感測器的預期壽命取決於幾個因素,包括要檢測的氣體和感測器的使用環境條件。一般而言,規定的預期壽命為一至三年。在實際中,預期壽命主要取決於感測器使用中所暴露的氣體總量以及其它環境條件,如溫度、壓力和濕度。
小結
電化學感測器對工作電源的要求很低。實際上,在氣體監測可用的所有感測器類型中,它們的功耗是最低的。因此,這種感測器廣泛用於包含多個感測器的移動儀器中。它們是有限空間應用場合中使用最多的感測器。
感測器的預期壽命由其製造商根據他們認為正常的條件進行預測。然而,感測器的預期壽命很大程度上取決於環境污染、溫度及其暴露的濕度。
典型的電化學感測器的規格
感測器類型:2或3電極,通常為3電極
范圍:可允許暴露極限的2-10倍
預期壽命:正常為12至24個月,取決於製造商與感測器
溫度范圍:–40°C至+45°C
相對濕度:15-95%,無凝露
響應時間:< 50秒
長期偏移:每月下移2%
『陸』 怎樣用物理天平測量氣體密度
1.
用天平和量筒測量氣體的密度
凡是不溶於水的氣體,都可藉助排水集氣法,用天平、量筒測得其密度,其准確度取決於天平的感量和量筒的最小刻度.
測量方法:
(1)取一球膽(或皮囊)接一根帶夾子的膠管,盛滿氣體後,用天平稱出其質量m1.
(2)用如圖的裝置,用力擠壓球膽,用排水集氣法在量筒中收集氣體.集氣完畢後,擰緊夾子.上下移動量筒,使其內外水平面一樣高,以保證氣體壓強為1個大氣壓強,然後由量筒刻度讀出氣體體積V.
(3)稱出餘下氣體和球的質量m2,則氣體的質量為m1-m2.
(4)代入公式計算氣體在1大氣壓下的密度
向左轉|向右轉
2.氣體的密度怎樣測?介紹了以下測量方法:用天平,100ml量筒,水。
向左轉|向右轉
100ml水的質量為100克,沒有空氣的空量筒質量為(b—100)克,100ml空氣的質量為
(a—b+100)克,所以空氣的密度為:ρ=(a—b+100)克/0。1升。
可在實際的測量中,我記錄了如下的測量數據;
向左轉|向右轉
測出空氣的密度為7克/升,而空氣的實際密度為1。29克/升,誤差為6倍多。為什麼誤差有這么大呢?
原來用的天平能測量的最少值為0。2克,而應該用能測量0。01克的天平,可能誤差就會少些。