❶ 生物學上實驗處理數據的方法有哪些
實驗數據的處理方法:
1. 平均值法
取算術平均值是為減小偶然誤差而常用的一種數據處理方法。通常在同樣的測量條件下,對於某一物理量進行多次測量的結果不會完全一樣,用多次測量的算術平均值作為測量結果,是真實值的最好近似。
2. 列表法
實驗中將數據列成表格,可以簡明地表示出有關物理量之間的關系,便於檢查測量結果和運算是否合理,有助於發現和分析問題,而且列表法還是圖象法的基礎。
列表時應注意:
①表格要直接地反映有關物理量之間的關系,一般把自變數寫在前邊,因變數緊接著寫在後面,便於分析。
②表格要清楚地反映測量的次數,測得的物理量的名稱及單位,計算的物理量的名稱及單位。物理量的單位可寫在標題欄內,一般不在數值欄內重復出現。
③表中所列數據要正確反映測量值的有效數字。
3. 作圖法
選取適當的自變數,通過作圖可以找到或反映物理量之間的變化關系,並便於找出其中的規律,確定對應量的函數關系。作圖法是最常用的實驗數據處理方法之一。
描繪圖象的要求是:
①根據測量的要求選定坐標軸,一般以橫軸為自變數,縱軸為因變數。坐標軸要標明所代表的物理量的名稱及單位。
②坐標軸標度的選擇應合適,使測量數據能在坐標軸上得到准確的反映。為避免圖紙上出現大片空白,坐標原點可以是零,也可以不是零。坐標軸的分度的估讀數,應與測量值的估讀數(即有效數字的末位)相對應。
❷ 判斷可疑測量值取捨常用的檢驗方法有哪些
判斷可疑測量值取捨常用的檢驗方法常用的有四倍法、Q檢驗法、迪克遜(Dixon)檢驗法和格魯布斯(Grubbs)檢驗法。
在實際分析工作中,常常會遇到一組平行測量數據中有個別的數據過高或過低這種數據稱為可以數據,也稱異常值或逸出值。
(2)在測量中處理壞值的常用方法有擴展閱讀:
在一組分析數據中,往往有個別數據與其他數據相差較大,這種個別數據成為可疑值。對可疑值的處理,應首先回顧和檢查生產可疑值的實驗過程,有無可覺察到的技術上的異常原因。但原因不明時,必須按一定的數理統計方法進行處理,決定保留還是舍棄。
在定量分析化學實驗中,實驗結束後,必須對分析數據進行處理,這樣能拓寬分析化學實驗的應用面,以適應廠礦化驗室實際工作的需要。同時也增強實驗員分析化學的理論和實驗必備素質。
❸ 如何判別測量數據中是否有異常值
一般異常值的檢測方法有基於統計的方法,基於聚類的方法,以及一些專門檢測異常值的方法等,下面對這些方法進行相關的介紹。
1. 簡單統計
如果使用pandas,我們可以直接使用describe()來觀察數據的統計性描述(只是粗略的觀察一些統計量),不過統計數據為連續型的,如下:
df.describe()紅色箭頭所指就是異常值。
以上是常用到的判斷異常值的簡單方法。下面來介紹一些較為復雜的檢測異常值演算法,由於涉及內容較多,僅介紹核心思想,感興趣的朋友可自行深入研究。
4. 基於模型檢測
這種方法一般會構建一個概率分布模型,並計算對象符合該模型的概率,把具有低概率的對象視為異常點。如果模型是簇的集合,則異常是不顯著屬於任何簇的對象;如果模型是回歸時,異常是相對遠離預測值的對象。
離群點的概率定義:離群點是一個對象,關於數據的概率分布模型,它具有低概率。這種情況的前提是必須知道數據集服從什麼分布,如果估計錯誤就造成了重尾分布。
比如特徵工程中的RobustScaler方法,在做數據特徵值縮放的時候,它會利用數據特徵的分位數分布,將數據根據分位數劃分為多段,只取中間段來做縮放,比如只取25%分位數到75%分位數的數據做縮放。這樣減小了異常數據的影響。
優缺點:(1)有堅實的統計學理論基礎,當存在充分的數據和所用的檢驗類型的知識時,這些檢驗可能非常有效;(2)對於多元數據,可用的選擇少一些,並且對於高維數據,這些檢測可能性很差。
5. 基於近鄰度的離群點檢測
統計方法是利用數據的分布來觀察異常值,一些方法甚至需要一些分布條件,而在實際中數據的分布很難達到一些假設條件,在使用上有一定的局限性。
確定數據集的有意義的鄰近性度量比確定它的統計分布更容易。這種方法比統計學方法更一般、更容易使用,因為一個對象的離群點得分由到它的k-最近鄰(KNN)的距離給定。
需要注意的是:離群點得分對k的取值高度敏感。如果k太小,則少量的鄰近離群點可能導致較低的離群點得分;如果K太大,則點數少於k的簇中所有的對象可能都成了離群點。為了使該方案對於k的選取更具有魯棒性,可以使用k個最近鄰的平均距離。
優缺點:(1)簡單;(2)缺點:基於鄰近度的方法需要O(m2)時間,大數據集不適用;(3)該方法對參數的選擇也是敏感的;(4)不能處理具有不同密度區域的數據集,因為它使用全局閾值,不能考慮這種密度的變化。
5. 基於密度的離群點檢測
從基於密度的觀點來說,離群點是在低密度區域中的對象。基於密度的離群點檢測與基於鄰近度的離群點檢測密切相關,因為密度通常用鄰近度定義。一種常用的定義密度的方法是,定義密度為到k個最近鄰的平均距離的倒數。如果該距離小,則密度高,反之亦然。另一種密度定義是使用DBSCAN聚類演算法使用的密度定義,即一個對象周圍的密度等於該對象指定距離d內對象的個數。
優缺點:(1)給出了對象是離群點的定量度量,並且即使數據具有不同的區域也能夠很好的處理;(2)與基於距離的方法一樣,這些方法必然具有O(m2)的時間復雜度。對於低維數據使用特定的數據結構可以達到O(mlogm);(3)參數選擇是困難的。雖然LOF演算法通過觀察不同的k值,然後取得最大離群點得分來處理該問題,但是,仍然需要選擇這些值的上下界。
6. 基於聚類的方法來做異常點檢測
基於聚類的離群點:一個對象是基於聚類的離群點,如果該對象不強屬於任何簇,那麼該對象屬於離群點。
離群點對初始聚類的影響:如果通過聚類檢測離群點,則由於離群點影響聚類,存在一個問題:結構是否有效。這也是k-means演算法的缺點,對離群點敏感。為了處理該問題,可以使用如下方法:對象聚類,刪除離群點,對象再次聚類(這個不能保證產生最優結果)。
優缺點:(1)基於線性和接近線性復雜度(k均值)的聚類技術來發現離群點可能是高度有效的;(2)簇的定義通常是離群點的補,因此可能同時發現簇和離群點;(3)產生的離群點集和它們的得分可能非常依賴所用的簇的個數和數據中離群點的存在性;(4)聚類演算法產生的簇的質量對該演算法產生的離群點的質量影響非常大。
7. 專門的離群點檢測
其實以上說到聚類方法的本意是是無監督分類,並不是為了尋找離群點的,只是恰好它的功能可以實現離群點的檢測,算是一個衍生的功能。
❹ 誤差可分為哪三類,各有什麼特點,分別可以採取什麼措施減小這些誤差對測量結果的影響
1.誤差可以分為系統誤差,隨機誤差和粗大誤差;
2.系統誤差的特點:具有一定的規律性,在相同條件下多次測量同一量時,誤差的符號保持恆定,或在條件改變時按某種確定規律而變化的誤差。所謂確定的規律,意思是這種誤差可以歸結為某一個因素或幾個因眾的函數,一般可用解析公式、曲線或數表來表達;
3.隨機誤差的特點:在多次測量中,隨機誤差的絕對值實際上不會超過一定的界限,即隨機誤差具有有界性;眾多隨機誤差之和有正負相消的機會,隨著測量 次數的增加,隨機誤差的算術平均值愈來愈小並以零為極限。因此,多次測量的平均值的隨機誤差比單個測量值的隨機誤差小,即隨機誤差具有抵償性;
4.粗大誤差的特點:在一定的測量條件下,測量結果明顯地偏離了真值。讀數錯誤、測量方法錯誤、測量儀器有嚴重缺陷等原因,都會導致產生粗大誤差。粗大誤差明顯地歪曲了測量結果,應予剔除,所以,對應於粗大誤差的測量結果稱異常數據或壞值。
❺ 如何判別測量數據中是否有異常值
在回彈法檢測砼強度中,按批抽樣檢測的測區數量往往很多,這就不可避免出現較多的檢測異常值,怎樣判斷和處理這些異常值,對於提高檢測結果的准確性意義重大。格拉布斯檢驗法是土木工程中常用的一種檢驗異常值的方法,其應用於回彈法檢測砼強度,能有效提高按批抽樣檢測結果的准確性。
❻ 在測量中,減少系統誤差的方法有哪些
1.從產生誤差的根源上消除系統誤差 這是消除系統誤差的根本方法。在測定之前,要求檢測人員在...
2.用校正方法來消除系統誤差 這種方法是對取測量用的滴定管、移液管、容量瓶等計量器具,在測量...
3.用空白實驗來消除系統誤差 空白試驗是指在不加試樣的情況下,按分析檢驗方法標准或規程在同樣...
4.採用對照試驗消除系統誤差 對照試驗就是用同樣的分析方法在同樣的條件下,用標樣代替試樣進行...
5.不變系統誤差消除方法 對測量過程中存在固定不變的系統誤差,可以採用以下消除方法: 01...
❼ 測量誤差的基本分類
測量誤差主要分為三大類:系統誤差、隨機誤差、粗大誤差,設被測量的真值為N′,測得值為N,則測量誤差Δ′N為Δ′N=N-N′。
1、系統誤差
在相同的觀測條件下,對某量進行了n次觀測,如果誤差出現的大小和符號均相同或按一定的規律變化,這種誤差稱為系統誤差。系統誤差一般具有累積性。
2、偶然誤差
在相同的觀測條件下,對某量進行了n次觀測,如果誤差出現的大小和符號均不一定,則這種誤差稱為偶然誤差,又稱為隨機誤差。例如,用經緯儀測角時的照準誤差,鋼尺量距時的讀數誤差等,都屬於偶然誤差。
3、粗大誤差
在一定的測量條件下,超出規定條件下預期的誤差稱為粗大誤差,一般地,給定一個顯著性的水平,按一定條件分布確定一個臨界值,凡是超出臨界值范圍的值,就是粗大誤差,它又叫做粗誤差或寄生誤差。
(7)在測量中處理壞值的常用方法有擴展閱讀
系統誤差的消除方法:
對測量儀表進行校正在准確度要求較高的測量結果中,引入校正值進行修正。消除產生誤差的根源 即正確選擇測量方法和測量儀器,盡量使測量儀表在規定的使,用條件下工作,消除各種外界因素造成的影響。
採用特殊的測量方法 如正負誤差補償法、替代法等。例如,用電流表測量電流時,考慮至外磁場對讀數的影響,可以把電流表轉動180度,進行兩次測量。
在兩次測量中,必然出現一次讀數偏大,而另一次讀數偏小,取兩次讀數的平均值作為測量結果,其正負誤差抵消,可以有效地消除外磁場對測量的影響。