導航:首頁 > 安裝方法 > 相似的解題方法和步驟

相似的解題方法和步驟

發布時間:2023-02-23 13:04:44

⑴ 高考數學各類題的一般解答方法、步驟

高考數學各題型解題應對策略

各位同學,你們好:

隨著高考腳步的臨近,每名考生都希望發揮出自己應有的水平,避免不當失分,可高考能否取得好成績,首先取決於數學能力,同時也取決於非智力因素,如:臨場發揮等。經常能見到一些平時成績很好的學生由於臨場發揮較差,造成高考失敗。所以非智力因素對考試的影響,正越來越受到教育人士和學生家長的關注。下面,結合數學學科的特點談談高考應注意事項及應對策略,以便使同學們在緊張的考試中沉著應對,並決戰高考。

一、考前准備
1.調適心理,增強信心
(1)合理設置考試目標,創設寬松的應考氛圍,以平常心對待高考;
(2)合理安排飲食,提高睡眠質量;
(3)保持良好的備考狀態,不斷進行積極的心理暗示;
2.悉心准備,不紊不亂
(1)查找錯題,分析病因,對症下葯,這是重點工作。
(2)回歸課本,回歸基礎,回歸近年高考試題,把握通性通法。
(3)重視書寫表達的規范性和簡潔性,掌握各類常見題型的表達模式,避免「會而不對,對而不全」現象的出現。
(4)臨考前應做一定量的中、低檔題,以達到熟悉基本方法、典型問題的目的,一般不再做難題,要保持清醒的頭腦和良好的競技狀態。
3.入場臨戰,通覽全卷
經驗表明,這段時間是學生最緊張、心理易產生焦慮的階段。此時,可將注意力轉移到某次印象較深的、考得較好的數學模擬考試中,回憶老師的講評;或回憶一些有趣、滑稽的事;也可採用心理暗示:"我是久經沙場的老將了,沒什麼大不了的";當然了也可全身心放鬆、閉目、做深呼吸,這樣直到發卷。剛拿到試卷,一般心情比較緊張,不要匆忙作答,可先通覽全卷,盡量從卷面上獲取最多的信息,為實施正確的解題策略作鋪墊,一般可在五分鍾之內做完下面幾件事:
(1)填寫好全部考生信息,檢查試卷有無問題;
(2)調節情緒,盡快進入考試狀態,可解答那些一眼就能看得出結論的簡單選擇或填空題(一旦解出,信心倍增,情緒立即穩定);
(3)對於不能立即作答的題目,可一邊通覽,一邊粗略地分為A、B兩類:A類指題型比較熟悉、容易上手的題目;B類指題型比較陌生、自我感覺有困難的題目,做到心中有數。
二、高考數學題型特點和答題技巧
1.選擇題——「足夠重視,不擇手段」
題型特點:
(1)概念性強:試題的陳述和信息的傳遞,都是以數學的學科規定與習慣為依據。即使是一些信息題比如:等和數列,集合的差集,等差比數列,也應按課本對基本概念的理解程序進行剖析。
(2)量化突出:定量型的試題所佔的比重很大,但量型選擇題其實不是簡單或機械的計算問題,其中往往蘊含了對概念、原理、性質和法則的考查,與定量計算緊密地結合在一起----量化突出。
(3)充滿思辨性:選擇性考試的高考數學試題,只憑簡單計算或直觀感知便能正確作答的試題不多,為了正確作答,或多或少總是要求考生具備一定的觀察、分析和邏輯推斷能力。思辨性的要求充滿題目的字里行間。
(4)形數兼備:這個特色在高中數學中得到充分的顯露,其表現是幾何題中常常隱藏著代數問題,而代數題中往往又寓有幾何圖形的問題。因此,數形結合與形數分離的解題方法是高考數學選擇題的一種重要且有效的思想方法與解題方法。
(5)解法多樣化:選擇題由於它有備選項,給試題的解答提供了豐富的有用信息,有相當大的提示性,為解題活動展現了廣闊的天地,大大地增加了解答的途徑和方法。常常潛藏著極其巧妙的解法,有利於對考生思維深度的考查。

解題策略:
(1)注意審題。弄清題目求什麼,已知什麼,求、知有什麼關系,把題目搞清楚了再動手答題。
(2)答題順序不一定按題號進行。可先從自己熟悉的題目答起,從有把握的題目入手,使自己盡快進入到解題狀態,再解答陌生或不太熟悉的題目,這樣也許能超水平發揮。
(3)數學選擇題大約有70%的題目都是直接法,要注意對符號、概念、公式、定理及性質等的理解和使用,例如函數的性質、數列的性質就是常見題目。
(4)挖掘隱含條件,注意易錯易混點。
(5)方法多樣,不擇手段。小題要小做,注意巧解,善於使用數形結合、特值(含特殊值、特殊位置、特殊圖形)、排除、驗證、轉化、分析、估算、極限等方法,一旦思路清晰,就迅速作答。不要在一兩個小題上糾纏,如果確實沒有思路,也要堅定信心,「題可以不會,但是要做對」,即使是「蒙」也有25%的勝率。
(6)控制時間。一般不要超過40分鍾,最好是30分鍾左右完成選擇題,爭取又快又准,為後面的解答題留下充裕的時間,防止「超時失分」。

選擇題是標准化測試的一種主要命題形勢,在高考數學試卷中佔有重要的份量。不僅是由於它佔有60分,而且是選擇題做得好與壞直接影響我們的情緒;影響整份試卷答題的效果,應引起足夠的重視。
2.填空題——「,慎之又慎,直撲結果」
題型特點:
填空題和選擇題同屬客觀題,它們形態短小精悍,考查目標集中,答案簡短、明確、具體等,不過填空題首先備選項,因此,解答時既有不受誤導的好處,又有缺乏提示的不足。對考生獨立思考和求解,在能力要求上會高一些。長期以來,填空題的答對率一直低於選擇題的答對率,也許這就是一個重要的原因。其次,填空題的考查方法比較靈活,在對題目的閱讀理解上,較之選擇題有時會顯得較為費勁。當然並非常常如此,這將取決於命題者對試題的設計意圖。
解題策略:
由於填空題和選擇題有相似之處,所以有些解題策略是可以共用的,在此不再多講,只針對不同的特徵給幾條建議:
一是填空題絕大多數是計算型(尤其是推理計算型)和概念(或性質)判斷性的試題,應答時必須按規則進行切實的計算或合乎邏輯的推演和判斷;
二是作答的結果必須是數值准確,形式規范。例如集合形式的表示、函數表達式的完整等,結果稍有毛病便是零分;
三是《考試說明》中對解答填空題提出的要求是「正確、合理、迅速」,因此,解答的基本策略是:細——審題要細,不能粗心大意;穩——變形要穩,防止操之過急;快——運算要快,力戒小題大做;准——答案要准,避免對而不全;活——解題要活,不要生搬硬套;。

在填完答案之後,一定要檢查一遍答案的表述是否完全符合題意(如:填寫的結果是用不等式表達,還是應該用集合表達?在用區間表達形式時,是用開區間,還是閉區間或半開半閉區間?最後結果的分數形式是最簡分數嗎?直線表達式用的是一般方程嗎?等等)。
3.解答題——「步步為營,踩點搶分」
題型特點:
解答題屬於提供型的試題,一般情況前三道題比較基本,後三道題有一定的難度(綜合性強,經常在知識交匯點命題)或者比較新穎(題型新穎、思路新穎)。首先,解答題應答時,考生不僅要提供出最後的結論,還得寫出或說出解答過程的主要步驟,提供合理、合法的說明,其次,解答題試題內涵豐富,考點較多,綜合性強,難度較高,因而解答題命題的自由度較大。

評分辦法:
數學高考閱卷評分實行懂多少知識給多少分的評分辦法,叫做「分段評分」。而考生「分段得分」的基本策略是:會做的題目力求不失分,部分理解的題目力爭多得分。會做的題目若不注意准確表達和規范書寫,常常會被「分段扣分」,有閱卷經驗的老師告訴我們,解答立體幾何題時,用向量方法處理的往往扣分少。
解答題閱卷的評分原則一般是:第一問,錯或未做,而第二問對,則第二問得分全給;前面錯引起後面方法用對但結果出錯,則後面給一半分。
解題策略:
(1)常見失分因素:
①對題意缺乏正確的理解,應做到慢審題快做題;
②公式記憶不牢,考前一定要熟悉公式、定理、性質等;
③思維不嚴謹,不要忽視易錯點;
④解題步驟不規范,一定要按課本要求,否則會因不規范答題失分,避免「對而不全」如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論,表達不規范、字跡不工整等非智力因素會影響閱卷老師的「感情分」;
⑤計算能力差失分多,會做的一定不能放過,不能一味求快,例如平面解析中的圓錐曲線問題就要求較強的運算能力;
⑥輕易放棄試題,難題不會做,可分解成小問題,分步解決,如最起碼能將文字語言翻譯成符號語言、設應用題未知數、設軌跡的動點坐標等,都能拿分。也許隨著這些小步驟的羅列,還能悟出解題的靈感。
(2)何為「分段得分」:
對於同一道題目,有的人理解的深,有的人理解的淺;有的人解決的多,有的人解決的少。為了區分這種情況,高考的閱卷評分辦法是懂多少知識就給多少分。這種方法我們叫它「分段評分」,或者「踩點給分」——踩上知識點就得分,踩得多就多得分。與之對應的「分段得分」的基本精神是,會做的題目力求不失分,部分理解的題目力爭多得分。
對絕大多數考生來說,更為重要的是如何從拿不下來的題目中分段得點分。我們說,有什麼樣的解題策略,就有什麼樣的得分策略。把你解題的真實過程原原本本寫出來,就是「分段得分」的全部秘密。
①缺步解答:如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等於失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每一步得分點的演算都可以得分,最後結論雖然未得出,但分數卻已過半,這叫「大題拿小分」。
②跳步答題:解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往後推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向;如果能得出預期結論,就回過頭來,集中力量攻克這一「卡殼處」。由於考試時間的限制,「卡殼處」的攻克如果來不及了,就可以把前面的寫下來,再寫出「證實某步之後,繼續有……」一直做到底。也許,後來中間步驟又想出來,這時不要亂七八糟插上去,可補在後面。若題目有兩問,第一問想不出來,可把第一問作「已知」,先做第二問,這也是跳步解答。
③退步解答:「以退求進」是一個重要的解題策略。如果你不能解決所提出的問題,那麼,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論。總之,退到一個你能夠解決的問題。為不產生「以偏概全」的誤解,應開門見山寫上「本題分幾種情況」。這樣,還會為尋找正確的、一般性的解法提供有意義的啟發。
④輔助解答:一道題目的完整解答,既有主要的實質性的步驟,也有次要的輔助性的步驟。實質性的步驟未找到之前,找輔助性的步驟是明智之舉。如:准確作圖,把題目中的條件翻譯成數學表達式,設應用題的未知數等。

答卷中要做到穩扎穩打,字字有據,步步准確,盡量一次成功,提高成功率。試題做完後要認真做好解後檢查,看是否有空題,答卷是否准確,所寫字母與題中圖形上的是否一致,格式是否規范,尤其是要審查字母、符號是否抄錯,在確信萬無一失後方可交卷。
(3)能力不同,要求有變:

由於考生的層次不同,面對同一張試卷,要盡可能發揮自己的水平,考試策略也有所不同。

①對基礎較差的考生而言要「以穩取勝」——這類考生除了知識方面的缺陷外,「會而不對,對而不全」是這類考生的致命傷。丟分的主要原因在於審題失誤和計算失誤。考試時要克服急躁心態,如果發現做不下去,就盡早放棄,把時間用於檢查已做的題,或回頭再做前面沒做的題。記住,只要把你會做的題都做對,你就是最成功的人!

②針對二本及部分一本的同學而言要「以准取勝」——他們基礎比較扎實,但也會犯低級錯誤,所以,考試時要做到准確無誤(指會做的題目),除了最後兩題的第三問不一定能做出,其他題目大都在「火力范圍」內。但前面可能遇到「攔路虎」,要敢於放棄,把會做的題做得准確無誤,再回來「打虎」。

③針對第一志願為名牌大學的考試而言要「以新取勝」——這些考生的主攻方向是能力型試題,在快速、正確做好常規試題的前提下,集中精力做好能力題。這些試題往往思考強度大,運算要求高,解題需要新的思想和方法,要靈活把握,見機行事。如果遇到不順手的試題,也不必恐慌,可能是試題較難,大家都一樣,此時,使會做的題不丟分就是上策。
總之:基礎題要拿足分,中檔題要少失分,難題要力爭多得分。

最後祝全體考生在高考中取得優異成績!

摘自bkhpf 的空間

⑵ 初中數學常用的幾種經典解題方法

初中數學里常用的幾種經典解題方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法

⑶ 證明三角形相似的常用方法

知識結構

重點、難點分析

相似三角形的判定及應用是本節的重點也是難點.

它是本章的主要內容之一,是在學完相似三角形的基礎上,進一步研究相似三角形的本質,以完成對相似三角形的定義、判定全面研究.相似三角形的判定還是研究相似三角形性質的基礎,是今後研究圓中線段關系的工具.

它的難度較大,是因為前面所學的知識主要用來證明兩條線段相等,兩個角相等,兩條直線平行、垂直等.藉助於圖形的直觀可以有助於找到全等三角形.但是到了相似形,主要是研究線段之間的比例關系,藉助於圖形進行觀察比較困難,主要是藉助於邏輯的體系進行分析、探求,難度較大.

釋疑解難

(1)全等三角形是相似三角形當相似比為1時的特殊情況,判定兩個三角形全等的3個定理和判定兩個三角形相似的3個定理之間有內在的聯系,不同之處僅在於前者是後者相似比為1的情況.

(2)相似三角形的判定定理的選擇:①已知有一角相等時,可選擇判定定理1與判定定理2;②已知有二邊對應成比例時,可選擇判定定理2與判定定理3;③判定直角三角形相似時,首先看是否可以用判定直角三角形的方法來判定,如果不能,再考慮用判定一般三角形相似的方法來判定.

(3)相似三角形的判定定理的作用:①可以用來判定兩個三角形相似;②間接證明角相等、線段域比例;③間接地為計算線段的長度及角的大小創造條件.

(4)三角形相似的基本圖形:①平行型:如圖1,「A」型即公共角對的邊平行,「×」型即對頂角對的邊平行,都可推出兩個三角形相似;②相交線型:如圖2,公共角對的邊不平行,即相交或延長線相交或對頂角所對邊延長相交.圖中幾種情況只要配上一對角相等,或夾公共角(或對頂角)的兩邊成比例,就可以判定兩個三角形相似。

(第1課時)

一、教學目標

1.使學生了解判定定理1及直角三角形相似定理的證明方法並會應用,掌握例2的結論.

2.繼續滲透和培養學生對類比數學思想的認識和理解.

3.通過了解定理的證明方法,培養和提高學生利用已學知識證明新命題的能力.

4.通過學習,了解由特殊到一般的唯物辯證法的觀點.

二、教學設計

類比學習,探討發現

三、重點及難點

1.教學重點:是判定定理l及直角三角形相似定理的應用,以及例2的結論.

2.教學難點:是了解判定定理1的證題方法與思路.

四、課時安排

1課時

五、教具學具准備

多媒體、常用畫圖工具、

六、教學步驟

〔復習提問〕

1.什麼叫相似三角形?什麼叫相似比?

2.敘述預備定理.由預備定理的題所構成的三角形是哪兩種情況.

〔講解新課〕

我們知道,用相似三角形的定義可以判定兩個三角形相似,但涉及的條件較多,需要有

三對對應角相等,三條對應邊的比也都相等,顯然用起來很不方便.那麼從本節課開始我們

來研究能不能用較少的幾個條件就能判定三角形相似呢?

上節課講的預備定理實際上就是一個判定三角形相似的方法,現在再來學習幾種三角形相似的判定方法.

我們已經知道,全等三角形是相似三角形當相似比為1時的特殊情況,判定兩個三角形

全等的三個公理和判定兩個三角形相似的三個定理之間有內在的聯系,不同處僅在於前者是後者相似比等於1的情況,教學時可先指出全等三角形與相似三角形之間的關系,然後引導學生自己用類比的方法找出新的命題,如:

問:判定兩個三角形全等的方法有哪幾種?

答:SAS、ASA(AAS)、SSS、HL.

問:全等三角形判定中的「對應角相等」及「對應邊相等」的語句,用到三角形相似的判定中應如何說?

答:「對應角相等」不變,「對應邊相等」說成「對應邊成比例」.

問:我們知道,一條邊是寫不出比的,那麼你能否由「ASA」或「AAS」,採用類比的方法,引出一個關於三角形相似判定的新的命題呢?

答:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

強調:(1)學生在回答中,如出現問題,教師要予以啟發、引導、糾正.

(2)用類比方法找出的新命題一定要加以證明.

如圖5-53,在△ABC和△ 中, , .

問:△ABC和△ 是否相似?

分析:可採用問答式以啟發學生了解證明方法.

問:我們現在已經學習了哪幾個判定三角形相似的方法?

答:①三角形的定義,②上一節學習的預備定理.

問:根據本命題條件,探討時應採用哪種方法?為什麼?

答:預備定理,因為用定義條件明顯不夠.

問:採用預備定理,必須構造出怎樣的圖形?

答: 或 .

問:應如何添加輔助線,才能構造出上一問的圖形?

此問學生回答如有困難,教師可領學生共同探討,注意告訴學生作輔助線一定要合理.

(1)在△ABC邊AB(或延長線)上,截取 ,過D作DE‖BC交AC於E.

「作相似.證全等」.

(2)在△ABC邊AB(或延長線上)上,截取 ,在邊AC(或延長線上)截取AE= ,連結DE,「作全等,證相似」.

(教師向學生解釋清楚「或延長線」的情況)

雖然定理的證明不作要求,但通過剛才的分析讓學生了解定理的證明思路與方法,這樣有利於培養和提高學生利用已學知識證明新命題的能力.

判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

簡單說成:兩角對應相等,兩三角形相似.

, ,

∽ .

例1 已知 和 中 , , , .

求證: ∽ .

此例題是判定定理的直拉應用,應使學生熟練掌握.

例2 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似.

已知:如圖5-54,在 中,CD是斜邊上的高.

求證: ∽ ∽ .

該例題很重要,它一方面可以起到鞏固、掌握判定定理1的作用;另一方面它的應用很廣泛,並且可以直接用它判定直角三角形相似,教材上排了黑體字,所以可以當作定理直接使用.

即 ∽△∽△.

〔小結〕

1判定定理1的引出及證明思路與方法的分析,要求學生掌握兩種輔助線作法的思路.

2.判定定理1的應用以及記住例2的結論並會應用.

自己去這里看: http://www.exue.com/Article/sxjiaoan/c2/200509/Article_36581.html
參考資料:http://www.exue.com/Article/sxjiaoan/c2/200509/Article_36581.html

⑷ 初中數學幾何解題思路與方法

10人貢獻了經驗
查看全部經驗 >
多了a萌
2017-03-26 6654人看過
作為和代數並列為初中數學兩大知識點的幾何,常常因為圖形變化多端,方法多種多樣而被稱為數學中的變形金剛。話雖如此,變形金剛也不是無敵的,最終仍舊是人類的智慧更勝一籌。學大教育的專家表示,實際上,每一道幾何題目背後都有著一定的法則和規律,每一類題都有著相似的解題思想,這種思想的集中體現,便是模型(變形金剛的原力所在)。對於幾何,我們不僅僅要在戰術上堅定執行,在戰略層面上也要對幾何在初中三年的整體學習有一個明確的了解。
步驟/方法
1/7 分步閱讀
得模型者得幾何,而模型思想的建立又並非一朝一夕,是需要同學們在大量的實戰做題和不斷總結方法中培養出來的。對於模型的理解和認識,分為很多層面,最淺的是基本的形似,看到圖形相仿或相似的題目,能夠有意識的聯想以前學過的題型並加以運用,套用,這是最簡單的模型思想。
2/7
高一些的是神似,看到一些關鍵點,關鍵線段或是題目所給條件的相似便能夠聯想到所學知識點,通過推理和演繹逐步取得正確的解法,記住的是一些具體模型,這是第二種層次。
3/7
最高的境界是,心中只有很少幾種基本模型,這些模型就像種子,看到一道題目就會發芽,開花結果,隨著對於題目的深入理解,不斷地尋找適合的花朵,每一朵花上面都有著一種具體的模型,而每種模型之間,都會有樹枝相連,相互間並不是孤立的,而是藉由其他條件貫穿連接的。達到這樣的理解才能算是包羅萬象,駕輕就熟。
4/7
我們對於模型的把控能不應當僅限於會用於具有明顯模型特徵的題目,對於一些特徵並不明顯的題目,我們要有能力添加輔助線去挖掘圖形當中的隱藏屬性。這就要求同學們對於每一種基本圖形的理解要十分深刻,不僅僅要認識模型,還要會補全模型,甚至構造模型來解決問題,這對於同學們動手添加輔助線的能力要求就很高了。
5/7
學好幾何無非做好以下幾點想學好幾何,一定要注意以下幾點:

1、多做題,在起步初期,多見一些題,對一些模型有初步認識。

2、多總結,盡量在老師的幫助下能夠總結出一些模型的主要輔助線做法和解題方法。

3、多應用,多用模型解決問題,不要沒有方法的撞大運,要根據圖形特點思考解法。

4、多完善,不斷做題總會有新的知識添加到已有的模型體系中來,不斷壯大自己的知識樹。

5、多思考,對於任何一道題都有可能存在不止一種方法,每種方法涉及到的模型不盡相同,要能夠通過一題多解發現模型之間的相互關系,增強自己對模型的理解深度。
6/7
從長遠的角度來說,中考幾何壓軸的考察趨勢越來越傾向於競賽化的趨勢,而考察重點則是以三大變化為主題的綜合題目。如今三大變換的思想也在不斷的滲透在初二幾何的題目中來,平移、旋轉、軸對稱這些技巧也會慢慢被我們所熟識。然而僅僅熟悉並不夠,我們還要結合模型把他們靈活掌握並能夠精確與用到實際的題目中去,這樣才能使我們做幾何題目的能力有所提高。
7/7
初二這一年是模型大爆炸得時期,上學期的全等三角形的模型,下學期的四邊形模型以及很多學校在初二暑假就會開設的圓的知識,很多都是需要同學們運用模型思想解決的問題。這些知識點不僅多,而且十分重要,可以說初中幾何部分的重點全部集中在初二這一年,故而打好基礎,勤加練習,多做總結是我們不得不去完成的任務。

閱讀全文

與相似的解題方法和步驟相關的資料

熱點內容
在家裡洗衣服的正確方法技巧 瀏覽:33
增加電容的計算方法 瀏覽:866
科學家研究病毒檢驗方法 瀏覽:733
魅族4智能桌面在哪裡設置方法 瀏覽:830
快速治療痘印的方法 瀏覽:88
古代錢的鑒別方法 瀏覽:151
圈樹鐵絲圍欄網廠家的計算方法 瀏覽:182
弱聲的正確方法和技巧 瀏覽:723
製作洞洞樂最簡單的方法 瀏覽:894
紙條造型的方法還有哪些 瀏覽:285
普通瑪瑙手串鑒別最簡單方法圖片 瀏覽:472
腫瘤綠色治療技術方法 瀏覽:948
小熊料理機的使用方法 瀏覽:456
右手拇指近節不能彎曲鍛煉方法 瀏覽:661
小胖腿部訓練方法 瀏覽:100
子線與11字環的連接方法 瀏覽:58
小米智能攝像機的連接電視方法 瀏覽:458
中耳炎怎麼方法檢查出來的 瀏覽:259
盆景製作方法怎麼打理 瀏覽:127
油泵齒條行程測量方法 瀏覽:821