㈠ 測植物葉片內葉綠素含量的方法是什麼
用不同提取介質(丙酮、丙酮一乙醇混合液、95 乙醇)浸提不同植物材料,採用分光光度法測定提取液葉綠素含量,其吸收光譜在長光波段基本相同,因此可用AmorL法公式計算葉綠素含量綜合前人及本試驗結果,選用丙酮和無水乙醇(2:1)混合提取液浸提葉綠素效果較好,沸水浴中可快速提取葉綠素,但也會破壞葉綠素.若能結合提取介質的選擇,也可減少對葉綠素含量的影響,例如採用丙酮一乙醇混合液並加熱,這可快速提取大批量植物樣品,光會使提取液葉綠素水平下降,所以在浸提過程中要盡量避免光照。
㈡ 怎樣測葉綠素a 以及怎樣進行藍藻計數
欲知封閉水域會否出現藻類瘋長,如藍藻爆發等現象,應監測水域中的藻類數量以及水質,由於對藻類等浮游植物採用計數的方法測定誤差較大,耗時費力,對檢測人員的工作經驗要求相對較高,一般可測定水中的葉綠素a含量代替藻類測定。當水中的葉綠素a含量突然增高,而且水中含有大量氮、磷等營養物質,加上陽光照射強烈,氣候炎熱等因素,該水域極有可能發生藻類瘋長,可通知各有關部門盡早採取應對措施。
因為藻類是一類含葉綠素的、光合自養的、無胚的原植體植物,在浮游藻類里葉綠素a的含量大約佔有機物比重的1~2%,是估算藻類生物量的較好指標。可預先測定藻類計數和葉綠素含量的相關關系,以葉綠素a的含量來推算藻類的數量,即通過測定水中的葉綠素來快速了解藻類的大致數量。
測定葉綠素a的儀器和方法有許多種,分光光度法測定葉綠素a是一簡便易行的測定方法,水樣經離心或過濾濃縮、研磨、丙酮提取後,定容,取上清液分別測量750nm、645nm、663nm、652nm等幾個波長下的吸光度值,根據經驗公式可分別計算出葉綠素a、葉綠素b和總葉綠素的含量。
分光光度法測定葉綠素a,與測定其他物質稍有不同,如:測磷只需測定單一波長的吸光度值,再以該吸光度值代入由標准溶液測得的校準曲線計算含磷量。而葉綠素a無法使用校準曲線,需用幾個波長下的吸光度值,根據經驗公式來分別計算出各項指標的含量。因為葉綠體色素由葉綠素a、葉綠素b等物質組成,試液是多組分的混合溶液,在試液中分離這幾類物質的難度較大,且無必要。葉綠素a在645nm和663nm 處均有吸收,在645nm處吸光系數較小,為16.75,在663nm 處較大,為82.04;葉綠素b 在645nm和663nm 處亦都有吸收,但在645nm處吸光系數較大,為45.60,在663nm 處較小,為9.27。由此可知:葉綠素a的吸收峰值出現在663nm 處,該吸收曲線延伸到645nm處,在此波長處的吸收系數不如在663 nm 處大,因此在計算公式中求算葉綠素a的含量時,需扣除葉綠素b在663nm和645nm 處的吸光度值,再進行計算。
標准分析方法要求,葉綠體色素提取液不可渾濁,在710nm或750nm波長下測量吸光度,其值應小於葉綠素a吸收峰的吸光度值的5%,否則應重新過濾。假定樣品在663nm處的吸光度值為0.03,則在750nm處的吸光度值不得大於0.0015,對試液的清澈程度要求很高,測量710nm或750nm的目的是避免懸浮物質的干擾,一般測量水中的渾濁度所採用的波長為680nm,為避免在680nm處仍有葉綠素a產生的吸收值,故將測量渾濁度的波長選在710nm以上。在計算公式中,凡參與計算的各吸光度值都應減去710nm處的吸光度值,以扣除懸浮物質的干擾。
採用分光光度法測定葉綠素含量,對測量儀器分光光度計的波長精確度要求較高。如果波長與原吸收峰波長相差1nm,則葉綠素a的測定誤差為2%,葉綠素b為19%,使用前必須對分光光度計的波長進行校正。校正方法除按儀器說明書外,還應以純的葉綠素a和b來校正。
㈢ 測葉綠素的方法
葉綠素含量的測定方法主要有紫外分光光度法、熒光分析法、活體葉綠素儀法、光聲光譜法和高效液相色譜法。不過目前應用最為廣泛的還是分光光度法。
葉綠素提取液的吸收光譜表明:有兩個強吸收峰,分別在紅光區和藍紫區,不同提取溶劑和原料所得的葉綠素溶液的吸收光譜比較相似。葉綠素a、葉綠素b的紅區最大吸收峰分別在663nm、645nm附近,在藍紫區分別為429nm、453nm附近。由於提取溶劑和原料不同,對葉綠素提取液進行光譜掃描後,所得的最大吸收值可能有較小范圍的浮動。
高效液相色譜(HPLC)定量檢測葉綠素含量准確率較高,效果很好。用甲醇和丙酮作為流動相,體積比為80:20時,同時在流動相中加入質量分數為0.1%的冰醋酸,流速為1.0mL/min。利用每一種色素的色譜峰面積進行定量,葉綠素a、葉綠素b的定量可通過外標法由工作曲線求得。[8]
穩定性影響因子
光
在活體植物中,葉綠素得到了很好的保護,既可以發揮光合作用,又不會發生降解。但離體葉綠素對光照很敏感,光和氧氣作用可導致葉綠素不可逆的分解。在自然條件或以膠態分子團存在的水溶液中,葉綠素在有氧的條件下,可進行光氧化而產生自由基,因此一些研究人員認為葉綠素的光氧化降解必需有氧分子參與,而且其降解速率隨氧分子濃度的升高而加快。單線態氧和羥基自由基是葉綠素光化學反應的活性中間體,可與葉綠素吡咯鏈作用而進一步產生過氧自由基和其他自由基,最終可導致卟啉環和吡咯鏈的分解既而造成顏色的褪去。當然影響光氧化的因素有很多,比如體系中的水分、溫度、光照時間、光照強度、光的波長范圍等等,在這些影響因素中主要有光照時間、光照強度、光的波長范圍、氧的濃度。目前在此方面的研究主要集中在自然光(復合光)對色素的影響而且大多數研究不是很深人。對於單色光(不同波段的光)對葉綠素穩定性的影響研究方面的報道卻較少。
葉綠素酶
已有研究表明,葉綠素酶是一種糖蛋白。葉綠素酶催化葉綠素結構中的植醇鍵而水解生成脫植葉綠素,是葉綠素降解中的關鍵酶。葉綠素酶是以葉綠素作為底物的,它是一種酯酶。脫鎂葉綠素也是葉綠素酶的底物,酶促反應的產物是脫鎂脫植葉綠素。葉綠素酶的最適反應溫度在60~80℃范圍,實驗證明,葉綠素酶在80℃以上其活性下降,100%時已完全失活。
溫度
一些研究表明,葉綠素提取液在不同受熱溫度下,其降解速率曲線有明顯的拐點,葉綠素在80℃以下,降解速度較慢,90℃以上降解速度急劇加快。總體而言,隨著溫度的升高,葉綠素降解的速率是逐漸加快的,只是較低的溫度下降解速率不明顯。
pH值
㈣ 葉綠素a的測定方法有哪些各有哪些優缺點
葉綠素a的測定方法有哪些
一.單色分光光度法測定葉綠素含量時,要測定665和750nm處的吸光度.根據文獻,665nm處光密度值應該在0.1-0.8之間.
葉綠素含量測定選取待測樣品0.5g,用80%丙酮溶液抽提,定容到10mL,測652nm處吸光度.
計算方法方式:
計算樣品葉綠素總量
Ct= D652× 1000/34.5 (1)
式中Ct-- 樣品總葉綠素含量,mg/L;D652-- 樣品丙酮抽提液在652nm處的吸光值。
回
二.葉綠素含量測定選取待測樣品0.5g,用80%丙酮溶液抽提,定容到10mL,測652nm處吸光度.
計算方法方式:
計算樣品葉綠素總量
Ct= D652× 1000/34.5 (1)
式中Ct-- 樣品總葉綠素含量,mg/L;D652-- 樣品丙酮抽提液在652nm處的吸光值。