導航:首頁 > 安裝方法 > 基於時間序列的定量測量方法

基於時間序列的定量測量方法

發布時間:2022-12-17 03:49:56

Ⅰ (三)時間序列分析的基本方法

1.模型的選擇和建模基本步驟

(1)建模基本步驟

1)用觀測、調查、取樣,取得時間序列動態數據。

2)作相關圖,研究變化的趨勢和周期,並能發現跳點和拐點。拐點則是指時間序列從上升趨勢突然變為下降趨勢的點,如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列。

3)辨識合適的隨機模型,進行曲線擬合。

(2)模型的選擇

當利用過去觀測值的加權平均來預測未來的觀測值時,賦予離得越近的觀測值以更多的權,而「老」觀測值的權數按指數速度遞減,稱為指數平滑(exponential smoothing),它能用於純粹時間序列的情況。

對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用自回歸(AR)模型、移動平均(MA)模型或其組合的自回歸移動平均(ARMA)模型等來擬合。

一個純粹的AR模型意味著變數的一個觀測值由其以前的p個觀測值的線性組合加上隨機誤差項而成,就像自己對自己回歸一樣,所以稱為自回歸模型。

MA模型意味著變數的一個觀測值由目前的和先前的n個隨機誤差的線性的組合。

當觀測值多於50個時一般採用ARMA模型。

對於非平穩時間序列,則要先將序列進行差分(Difference,即每一觀測值減去其前一觀測值或周期值)運算,化為平穩時間序列後再用適當模型去擬合。這種經差分法整合後的ARMA模型稱為整合自回歸移動平均模型(Autoregressive Integrated Moving Average),簡稱ARIMA模型(張文彤,2002;薛薇,2005;G.E.P.Box et al.,1994)。

ARIMA模型要求時間序列滿足平穩性和可逆性的條件,即序列均值不隨著時間增加或減少,序列的方差不隨時間變化。但由於我們所關注的地層元素含量變化為有趨勢和周期成分的時間序列,都不是平穩的,這就需要對其進行差分來消除這些使序列不平穩的成分。所以我們選擇更強有力的ARIMA模型。

2.平穩性和周期性研究

有些數學模型要檢驗周期性變化是否為平穩性過程,即其統計特性不隨時間而變化,我們可根據序列圖、自相關函數圖、偏自相關函數圖和譜密度圖等對序列的平穩性和周期性進行識別。當序列圖上表現有明顯分段特徵時可採用分段計演算法,若分段求得的每段頻譜圖基本一致或相似,則認為過程是平穩的,否則是非平穩的。

自相關函數ACF(Autocorrelations function)是描述序列當前觀測值與序列前面的觀測值之間簡單和常規的相關系數;而偏自相關函數PACF(Partial autocorrelations function)是在控制序列其他的影響後,測度序列當前值與某一先前值之間的相關程度。

平穩過程的自相關系數和偏自相關系數只是時間間隔的函數,與時間起點無關,都會以某種方式衰減趨近於0。

當ACF維持許多期的正相關,且ACF的值通常是很緩慢地遞減到0,則序列為非平穩型。

序列的自相關-偏自相關函數具有對稱性,即反映了周期性變化特徵。

3.譜分析

確定性周期函數X(t)(設周期為T)在一定條件下通過傅里葉(Fourier)級數展開可表示成一些不同頻率的正弦和餘弦函數之和(陳磊等,2001),這里假設為有限項,即:

洞庭湖區第四紀環境地球化學

其中,頻率fk=k/T,k=1,2,…,N。

上式表明:如果拋開相位的差別,這類函數的周期變化完全取決於各餘弦函數分量的頻率和振幅。換句話說,我們可以用下面的函數來表示X(t)的波動特徵:

洞庭湖區第四紀環境地球化學

函數p(f)和函數X(t)表達了同樣的周期波動,兩者實際上是等價的,只不過是從頻域和時域兩個不同角度來描述而已。稱p(f)為X(t)的功率譜密度函數,簡稱譜密度。它不僅反映了X(t)中各固有分量的周期情況,還同時顯示出這些周期分量在整體X(t)中各自的重要性。具體說,在X(t)中各周期分量的對應頻率處,譜密度函數圖應出現較明顯的凸起,分量的振幅越大,峰值越高,對X(t)的整體影響也越大。

事實上,無論問題本身是否具有周期性或不確定性(如連續型隨機過程或時間序列)都可以採用類似的方法在頻域上加以描述,只是表示的形式和意義比上面要復雜得多。時間序列的譜分析方法就是要通過估計時間序列的譜密度函數,找出序列中的各主要周期分量,通過對各分量的分析達到對時間序列主要周期波動特徵的把握。

根據譜分析理論,對一個平穩時間序列{Xt},如果其自協方差函數R(k)滿足

|R(k)|<+∞,則其譜密度函數h(f)必存在且與R(k)有傅氏變換關系,即平穩序列 {Xt} 的標准化譜密度p(f)是自相關函數r(k)的傅氏變換。由於p(f)是一個無量綱的相對值,在許多情況下更便於分析和比較。

如何從實際問題所給定的時間序列 {Xt,t=1,2,…,n} 中估計出其譜密度或標准譜密度函數是譜分析要解決的主要問題。本書採用圖基-漢寧(Tukey-Hanning)窗譜估計法。

什麼是時間序列

時間序列法是一種定量預測方法,亦稱簡單外延方法。在統計學中作為一種常用的預測手段被廣泛應用。時間序列通常有以下三種方法:
1.方法一是把一個時間序列的數值變動,分解為幾個組成部分,通常分為:
(1)傾向變動,亦稱長期趨勢變動T;
(2)循環變動,亦稱周期變動C;
(3)季節變動,即每年有規則地反復進行變動S;
(4)不規則變動,亦稱隨機變動I等。然後再把這四個組成部分綜合在一起,得出預測結果。
2.方法二是把預測對象、預測目標和對預測的影響因素都看成為具有時序的,為時間的函數,而時間序列法就是研究預測對象自身變化過程及發展趨勢。
3.方法三是根據預測對象與影響因素之間的因果關系及其影響程度來推算未來。與目標的相關因素很多,只能選擇那些因果關系較強的為預測影響的因素。
時間序列分析在第二次世界大戰前應用於經濟預測。二次大戰中和戰後,在軍事科學、空間科學、氣象預報和工業自動化等部門的應用更加廣泛。

Ⅲ 時間序列分析方法

時間序列是指一組在連續時間上測得的數據,其在數學上的定義是一組向量x(t), t=0,1,2,3,...,其中t表示數據所在的時間點,x(t)是一組按時間順序(測得)排列的隨機變數。包含單個變數的時間序列稱為單變數時間序列,而包含多個變數的時間序列則稱為多變數。

時間序列在很多方面多有涉及到,如天氣預報,每天每個小時的氣溫,股票走勢等等,在商業方面有諸多應用,如:

下面我們將通過一個航班數據來說明如何使用已有的工具來進行時間序列數據預測。常用來處理時間序列的包有三個:

對於基於AR、MA的方法一般需要數據預處理,因此本文分為三部分:

通過簡單的初步處理以及可視化可以幫助我們有效快速的了解數據的分布(以及時間序列的趨勢)。

觀察數據的頻率直方圖以及密度分布圖以洞察數據結構,從下圖可以看出:

使用 statsmodels 對該時間序列進行分解,以了解該時間序列數據的各個部分,每個部分都代表著一種模式類別。借用 statsmodels 序列分解我們可以看到數據的主要趨勢成分、季節成分和殘差成分,這與我們上面的推測相符合。

如果一個時間序列的均值和方差隨著時間變化保持穩定,則可以說這個時間序列是穩定的。

大多數時間序列模型都是在平穩序列的前提下進行建模的。造成這種情況的主要原因是序列可以有許多種(復雜的)非平穩的方式,而平穩性只有一種,更加的易於分析,易於建模。

在直覺上,如果一段時間序列在某一段時間序列內具有特定的行為,那麼將來很可能具有相同的行為。譬如已連續觀察一個星期都是六點出太陽,那麼可以推測明天也是六點出太陽,誤差非常小。

而且,與非平穩序列相比,平穩序列相關的理論更加成熟且易於實現。

一般可以通過以下幾種方式來檢驗序列的平穩性:

如果時間序列是平穩性的,那麼在ACF/PACF中觀測點數據與之前數據點的相關性會急劇下降。

下圖中的圓錐形陰影是置信區間,區間外的數據點說明其與觀測數據本身具有強烈的相關性,這種相關性並非來自於統計波動。

PACF在計算X(t)和X(t-h)的相關性的時候,挖空在(t-h,t)上所有數據點對X(t)的影響,反應的是X(t)和X(t-h)之間真實的相關性(直接相關性)。

從下圖可以看出,數據點的相關性並沒有急劇下降,因此該序列是非平穩的。

如果序列是平穩的,那麼其滑動均值/方差會隨著時間的變化保持穩定。

但是從下圖我們可以看到,隨著時間的推移,均值呈現明顯的上升趨勢,而方差也呈現出波動式上升的趨勢,因此該序列是非平穩的。

一般來講p值小於0.05我們便認為其是顯著性的,可以拒絕零假設。但是這里的p值為0.99明顯是非顯著性的,因此接受零假設,該序列是非平穩的。

從上面的平穩性檢驗我們可以知道該時間序列為非平穩序列。此外,通過上面1.3部分的序列分解我們也可以看到,該序列可分解為3部分:

我們可以使用數據轉換來對那些較大的數據施加更大的懲罰,如取對數、開平方根、立方根、差分等,以達到序列平穩的目的。

滑動平均後數據失去了其原來的特點(波動式上升),這樣損失的信息過多,肯定是無法作為後續模型的輸入的。

差分是常用的將非平穩序列轉換平穩序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以對非平穩序列進行處理的,其相當於先將非平穩序列通過差分轉換為平穩序列再來使用ARMA進行建模。

一般差分是用某時刻數值減去上一時刻數值來得到新序列。但這里有一點區別,我們是使用當前時刻數值來減去其對應時刻的滑動均值。

我們來看看剛剛差分的結果怎麼樣。

讓我們稍微總結下我們剛剛的步驟:

通過上面的3步我們成功的將一個非平穩序列轉換成了一個平穩序列。上面使用的是最簡單的滑動均值,下面我們試試指數滑動平均怎麼樣。

上面是最常用的指數滑動平均的定義,但是pandas實現的指數滑動平均好像與這個有一點區別,詳細區別還得去查pandas文檔。

指數滑動均值的效果看起來也很差。我們使用差分+指數滑動平均再來試試吧。

在上面我們通過 取log+(指數)滑動平均+差分 已經成功將非平穩序列轉換為了平穩序列。

下面我們看看,轉換後的平穩序列的各個成分是什麼樣的。不過這里我們使用的是最簡單的差分,當前時刻的值等於原始序列當前時刻的值減去原始序列中上一時刻的值,即: x'(t) = x(t) - x(t-1)。

看起來挺不錯,是個平穩序列的樣子。不過,還是檢驗一下吧。

可以看到,趨勢(Trend)部分已基本被去除,但是季節性(seasonal)部分還是很明顯,而ARIMA是無法對含有seasonal的序列進行建模分析的。

在一開始我們提到了3個包均可以對時間序列進行建模。

為了簡便,這里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,該方法在ARIMA的基礎上添加了額外功能,可以擬合seasonal部分以及額外添加的數據。

在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我們先簡單了解下這個模型。這個模型其實可以包括三部分,分別對應著三個參數(p, d, q):

因此ARIMA模型就是將AR和MA模型結合起來然後加上差分,克服了不能處理非平穩序列的問題。但是,需要注意的是,其仍然無法對seasonal進行擬合。

下面開始使用ARIMA來擬合數據。

(1) 先分訓練集和驗證集。需要注意的是這里使用的原始數據來進行建模而非轉換後的數據。

(2)ARIMA一階差分建模並預測

(3)對差分結果進行還原

先手動選擇幾組參數,然後參數搜索找到最佳值。需要注意的是,為了避免過擬合,這里的階數一般不太建議取太大。

可視化看看結果怎麼樣吧。

(6)最後,我們還能對擬合好的模型進行診斷看看結果怎麼樣。

我們主要關心的是確保模型的殘差(resial)部分互不相關,並且呈零均值正態分布。若季節性ARIMA(SARIMA)不滿足這些屬性,則表明它可以進一步改善。模型診斷根據下面的幾個方面來判斷殘差是否符合正態分布:

同樣的,為了方便,我們這里使用 pmdarima 中一個可以自動搜索最佳參數的方法 auto_arima 來進行建模。

一般來說,在實際生活和生產環節中,除了季節項,趨勢項,剩餘項之外,通常還有節假日的效應。所以,在prophet演算法裡面,作者同時考慮了以上四項,即:

上式中,

更多詳細Prophet演算法內容可以參考 Facebook 時間序列預測演算法 Prophet 的研究 。

Prophet演算法就是通過擬合這幾項,然後把它們累加起來得到時間序列的預測值。

Prophet提供了直觀且易於調整的參數:

Prophet對輸入數據有要求:

關於 Prophet 的使用例子可以參考 Prophet example notebooks

下面使用 Prophet 來進行處理數據。

參考:
Facebook 時間序列預測演算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
數據分析技術:時間序列分析的AR/MA/ARMA/ARIMA模型體系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
時間序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文檔: https://facebookincubator.github.io

Ⅳ 時間序列的種類

一、絕對數時間序列

1、時期序列:由時期總量指標排列而成的時間序列 。

時期序列的主要特點有:

1)、序列中的指標數值具有可加性。

2)、序列中每個指標數值的大小與其所反映的時期長短有直接聯系。

3)、序列中每個指標數值通常是通過連續不斷登記匯總取得的。

2、時點序列:由時點總量指標排列而成的時間序列

時點序列的主要特點有:

1)、序列中的指標數值不具可加性。

2)、序列中每個指標數值的大小與其間隔時間的長短沒有直接聯系。

3)、序列中每個指標數值通常是通過定期的一次登記取得的。

二、相對數時間序列

把一系列同種相對數指標按時間先後順序排列而成的時間序列叫做相對數時間序列。

三、平均數時間序列

平均數時間序列是指由一系列同類平均指標按時間先後順序排列的時間序列。

(4)基於時間序列的定量測量方法擴展閱讀

時間序列數據變動存在著規律性與不規律性

時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型。

1、趨勢性:某個變數隨著時間進展或自變數變化,呈現一種比較緩慢而長期的持續上升、下降、停留的同性質變動趨向,但變動幅度可能不相等。

2、周期性:某因素由於外部影響隨著自然季節的交替出現高峰與低谷的規律。

3、隨機性:個別為隨機變動,整體呈統計規律。

4、綜合性:實際變化情況是幾種變動的疊加或組合。預測時設法過濾除去不規則變動,突出反映趨勢性和周期性變動。

Ⅳ 什麼是時間序列分析法

時間序列是按時間順序的一組數字序列。時間序列分析就是利用這組數列,應用數理統計方法加以處理,以預測未來事物的發展。時間序列分析是定量預測方法之一,它的基本原理:一是承認事物發展的延續性。應用過去數據,就能推測事物的發展趨勢。二是考慮到事物發展的隨機性。任何事物發展都可能受偶然因素影響,為此要利用統計分析中加權平均法對歷史數據進行處理。該方法方法簡單易行,便於掌握,但准確性差,一般只適用於短期預測。

Ⅵ 時間序列分析

時間序列分析是一個很大的分類,包括很多模型,分別適用於不同的情況。所以得到的結果一不一樣和建的模型一不一樣有關系。至於模型長什麼樣要看數據長什麼樣。把數據按時間畫出來,看有沒有明顯趨勢,波動或者季節性,然後一個一個模型試。

Ⅶ 時間序列預測方法有哪些分類,分別適合使用的情況是

時間序列預測方法根據對資料分析方法的不同,可分為:簡單序時平均數法、加權序時平均數法、移動平均法、加權移動平均法、趨勢預測法、指數平滑法、季節性趨勢預測法、市場壽命周期預測法等。

1、簡單序時平均數法只能適用於事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜採用此法。

2、加權序時平均數法就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。

3、簡單移動平均法適用於近期期預測。當產品需求既不快速增長也不快速下降,且不存在季節性因素時,移動平均法能有效地消除預測中的隨機波動。

4、加權移動平均法即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。

5、指數平滑法即根用於中短期經濟發展趨勢預測,所有預測方法中,指數平滑是用得最多的一種。

6、季節趨勢預測法根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。

7、市場壽命周期預測法,適用於對耐用消費品的預測。這種方法簡單、直觀、易於掌握。

(7)基於時間序列的定量測量方法擴展閱讀:

時間序列預測法的特徵

1、時間序列分析法是根據過去的變化趨勢預測未來的發展,前提是假定事物的過去延續到未來。運用過去的歷史數據,通過統計分析,進一步推測未來的發展趨勢。不會發生突然的跳躍變化,是以相對小的步伐前進;過去和當前的現象,可能表明現在和將來活動的發展變化趨向。

2.時間序列數據變動存在著規律性與不規律性

時間序列中的每個觀察值大小,是影響變化的各種不同因素在同一時刻發生作用的綜合結果。從這些影響因素發生作用的大小和方向變化的時間特性來看,這些因素造成的時間序列數據的變動分為四種類型:趨勢性、周期性、隨機性、綜合性。

Ⅷ 時間序列怎麼計算

時間序列計算方法:時間序列法是一種定量預測方法,亦稱簡單外延方法,在統計學中作為一種常用的預測手段被廣泛應用。時間序列的統計特徵,一般都能夠想到最大值(max),最小值(min),均值(mean),中位數(median),方差(variance),標准差(standard variance)等指標

閱讀全文

與基於時間序列的定量測量方法相關的資料

熱點內容
睡眠枕使用方法 瀏覽:631
數字顯示最簡單的方法 瀏覽:1002
用紙做迴旋鏢的簡單方法 瀏覽:544
風挾熱邪有什麼調理方法 瀏覽:176
美腹肌的使用方法視頻 瀏覽:505
isdg爽快酵素膠囊的食用方法 瀏覽:108
如何學好閱讀理解方法 瀏覽:127
奧迪水壺的安裝方法 瀏覽:965
紅米四設置自動開關機在哪裡設置方法 瀏覽:656
手指扭傷如何消腫快速方法 瀏覽:205
快速治療爛嘴的方法 瀏覽:808
電路阻值的計算方法 瀏覽:969
測量房屋角尺的使用方法 瀏覽:803
禽腺病毒檢測方法 瀏覽:477
皮製手機殼清洗方法 瀏覽:158
學習英語翻譯的方法和技巧 瀏覽:80
橘子的使用方法 瀏覽:981
四年級檢測電路有兩種方法分別是 瀏覽:937
安阻法的測量方法 瀏覽:147
兒童低燒怎麼辦簡單的退燒方法 瀏覽:402