導航:首頁 > 安裝方法 > 測量天體距離的方法

測量天體距離的方法

發布時間:2022-01-15 06:01:58

1. 古人怎樣測量天體之間距離

一般是用三角法,比如說地球在春分點和秋分點時分別觀測一顆恆星對地球的角度,然後以公轉軌道半徑為基線,算出它距地球的距離

對於較近的天體(500光年以內)採用三角法測距。
500--10萬光年的天體採用光度法確定距離。
10萬光年以外天文學家找到了造父變星作為標准,可達5億光年的范圍。
更遠的距離是用觀測到的紅移量,依據哈勃定理推算出來的。
參考資料:吳國盛 《科學的歷程》

同的天體距離要有不同的方法,摘抄如下:

天體測量方法

2.2.2光譜在天文研究中的應用

人類一直想了解天體的物理、化學性狀。這種願望只有在光譜分析應用於天文後才成為可能並由此而導致了天體物理學的誕生和發展。通過光譜分析可以:(1)確定天體的化學組成;(2)確定恆星的溫度;(3)確定恆星的壓力;(4)測定恆星的磁場;(5)確定天體的視向速度和自轉等等。

2.3天體距離的測定
人們總希望知道天體離我們有多遠,天體距離的測量也一直是天文學家們的任務。不同遠近的天體可以采不同的測量方法。隨著科學技術的發展,測定天體距離的手段也越來越先進。由於天空的廣袤無垠,所使用測量距離單位也特別。天文距離單位通常有天文單位(AU)、光年(ly)和秒差距(pc)三種。

2. 人類是怎樣測量各種天體距離地球的距離的

天文學家通過使用稱為恆星視差或三角視差的方法估算空間中附近物體的距離,視差是由於觀察者視角的變化而導致的物體的視在位移。簡而言之,視察是當地球圍繞太陽旋轉時,它們在更遠的恆星背景下測量恆星的視在運動。天文學家還通過恆星星等和紅移等方法來測量天體距離。

通過測量到許多鄰近恆星的距離,天文學家已經能夠建立恆星的顏色與其內在亮度之間的關系。如果從標准距離觀察,測量了一些恆星看起來的亮度,那麼這些星星可以成為標準星等。如果一顆恆星距離太遠,無法測量它的視差,天文學家可以將它的顏色和光譜與一標准亮度相匹配,並確定它的內在亮度。通過與它的視亮度相比較,從而應用1/r^2規則來很好地測量它的距離。1/r^2法則規定光源的視亮度與其距離的平方成正比。

3. 怎麼測量天體間距離啊

這個問題有點難度,問的有水平。
我來說一下原理吧,以哈勃空間望遠鏡為例,它接收來自宇宙各個方向的微波,根據多普勒效應中的紅移——當光源離我們遠去時,光的波長會變長,因為能量的耗散,但速度保持不變。當我們的哈勃接收到多個波段的微波後進行各個波段的篩撿,每一個波段根據多普勒效應的方程都有一個對應的距離,波長隨星體離地球的距離越大而變長。當我們的哈勃方向在某一波段的微波圖像中有些區域的微波比較集中則說明這一區域中有天體,當然每個波段的區間是很小的,這個天體與地球的距離就可以依據把該波段的波長代入方程求解的到一個較為精確的距離的值。而這個天體在一段時期內的與地球的距離是近似一定的,他發出的光被我們觀測到時的波長是一定的,在A波段的宇宙微波圖像中出現的天體就不會出現在B波段的宇宙微波圖像中。其實,科學家早就先算出了每個波段對應的與地距離,在這個波段的宇宙微波圖像中的出現的天體就都近似有一個相同的與地距離。
再來給你關於哈勃成像技術的知識吧,當確定一個天體存在後,在對該天體所在區域進行更加精確的微波成像,把這個大波段在分成幾個小波段,那麼這個天體整體的各個部分的不同波段的微波的三維柱狀圖就出現了,在再把不同的波段對應的用不同的可見光的波段代替,就呈現出美麗的圖像,其實是電腦最終成像的。

4. 天體的測量方法

地球上的觀測者至天體的空間距離。不同類型的天體距離遠近相差十分懸殊,測量的方法也各不相同。
①太陽系內的天體是一類天體,可用三角測量法測定月球和行星的周日地平視差;並根據天體力學理論進而求得太陽視差。也可用向月球或大行星發射無線電脈沖或向月球發射激光,然後接收從它們表面反射的回波,記錄電波往返時刻而直接推算天體距離。
②對於太陽系外的較近天體,三角視差法只對離太陽 100秒差距范圍以內的恆星適用。更遠的恆星三角視差太小,無法測定,要用其他方法間接測定其距離。
主要有:
分析恆星光譜的某些譜線以估計恆星的絕對星等,然後通過恆星的絕對星等與視星等的比較求其距離 ;
分析恆星光譜中星際吸收線強弱來估算恆星的距離;利用目視雙星的繞轉周期和軌道張角的觀測值來推算其距離;
通過測定移動星團的輻射點位置以及成員星的自行和視向速度來推算該星團的距離;
對於具有某種共同特徵的一群恆星根據其自行平均值估計這群星的平均距離;
利用銀河系較差自轉與恆星視向速度有關的原理從視向速度測定值求星群平均距離。
③對於太陽系外的遠天體測量距離的方法主要有:
利用天琴座RR型變星觀測到的視星等值;
利用造父變星的周光關系;
利用球狀星團或星系的角直徑測定值;
利用待測星團的主序星與已知恆星的主序星的比較;
利用觀測到的新星或超新星的最大視星等;
利用觀測到的河外星系裡亮星的平均視星等;
利用觀測到的球狀星團的累積視星等;
利用星系的譜線紅移量和哈勃定律等。

5. 天體測量學的天體的測距方法

測量宇宙的距離好像爬樓梯一樣,從近距離到遠距離一層一層的往上爬。而測量的距離的方法也好像接力賽跑者一樣,各扮演著不同先後的角色,合力完成測量宇宙距離的任務。
距離指標需要用前一階指標來校準,自然地,不準確也逐漸累積,所以對愈大距離的天體,距離的不確定愈高。
天文學家用來作為遠距離指標的天體計有:新星、發射星雲、行星狀星雲、球狀星團、I 型超新星、星系…...其中,行星狀星雲與I 型超新星的亮度范圍明確,亮度高,是較成功的遠距離指標。
遠距離指標經常需要利用近距離指標來校準,各種量距離方式的關聯性,可以用一倒立的「距離金字塔圖(the distance pyramid)」 來表示。 精確決定地球與太陽平均距離(一天文單位,1 AU),是量測宇宙距離的基礎。
由開普勒定律,可以推算出金星與地球的最近距離約是0.28 A.U.。在金星最近地球時,用金星表面的雷達回波 時間,可找出(誤差小於一公里)
1 AU = 149,597,870 公里≒1.5* 10^8 公里
測距適用范圍:~1AU。 以地球和太陽間的平均距離為底線,觀測恆星在六個月間隔,相對於遙遠背景恆星的視差。恆星的距離d
d (秒差距,pc) = 1/ p (視差角,秒弧)
1 pc 定義為造成一秒視差角的距離,等於3.26 光年。地面觀測受大氣視寧度的限制,有效的觀測距離約為100 pc (~300 光年)。在地球大氣層外的Hipparcos 衛星與哈勃望遠鏡,能用視差法量測更遠的恆星,范圍可推廣到1000 pc。
測距適用范圍:~1,000 pc。 如果星體的視星等為mV,絕對星等MV,而以秒差距為單位的星體距離是d。它們間的關系稱為距離模數
mV - MV = -5 + 5lgd
如果知道恆星的光譜分類 與光度分類 ,由赫羅圖 可以找出恆星的光度。更進一步,可以算出或由赫羅圖讀出恆星的絕對星等,代入距離模數公式,即可以找出恆星的距離。
因為主序星的分布較集中在帶狀區域,所以光譜視差法常用主序星為標的。利用鄰近的恆星,校準光譜視差法的量測。另也假設遠處的恆星的組成與各項性質,大致與鄰近恆星類似。誤差常在25% 以上,。(註:本銀河系直徑約30 Kpc)
測距適用范圍:~7Mpc。
例:若某恆星的視星等為+15 ,其光譜判定為G2 V 的恆星『i從赫羅圖讀出該星的絕對星等為+5 ,代入距離模數公式15 - 5 = 5 log d - 5 ,求出該星的距離d= 1000 pc = 3260 光年。 位在不穩定帶的後主序帶恆星,其亮度有周期性的變化(周光曲線),而綜合許多變星的周光關系,可以發現變星亮度變化周期與恆星的光度成正比(參見周光關系)。用來做距離指標的變星種類主要有造父變星(I 型與Ⅱ 型)與天琴座RR型變星。
測定變星的光譜類別後,由周光圖可以直接讀出它的光度(絕對星等)。由變星的視星等和絕對星,利用距離模數公式,
mV - MV = -5 + log10d
即可定出變星的距離。目前發現,最遠的造父變星 在M 100,距離我們約17 Mpc。
測距適用范圍:~17 Mpc。 平均每年可以觀測到數十顆外星系的超新星。大部份的超新星(I 型與Ⅱ 型) 的最大亮度多很相近,天文學家常假設它們一樣,並以它們做為大距離的指標。
以造父變星校準超新星的距離,以找出I 型與Ⅱ 型星分別的平均最大亮度。由超新星的光度曲線 ,可以決定它的歸類。對新發現的超新星,把最大視亮度(mV) 與理論最大絕對亮度(MV) 帶入距離模數公式,即可找出超新星的距離。
Ⅱ 型超新星受外層物質的干擾,平均亮度的不確定性較高,I 型超新星較適合做為距離指標。
測距適用范圍:> 1000 Mpc。 漩渦星系的氫21 公分線,因星系自轉而有杜卜勒加寬。由譜線加寬的程度,可以找出譜線的位移量Δλ,並求出星系的漩渦臂在視線方向的速度Vr,
Δλ/λo = Vr/c = Vsin i/c
i 為觀測者視線與星系盤面法線的夾,由此可以推出漩渦星系的旋轉速率。Tulley 與Fisher 發現,漩渦星系的光度與自轉速率成正比,現在稱為Tulley-Fisher 關系。
量漩渦星系的旋轉速率,可以知道漩渦星系的光度,用距離模數公式,就可以找出漩渦星系的距離。Tulley-Fisher 關系找出的距離,大致與I 型超新星同級,可互為對照。
註:現常觀測紅外線區譜線,以避免吸收。
測距適用范圍:> 100 Mpc。 幾乎所有星系相對於本銀河系都是遠離的,其遠離的徑向速度可用多普勒效應來測量星系的紅位移 ,進而找出星系遠離的速度。
1929年Edwin Hubble得到遠離徑向速度與星系距離的關系
哈勃定律
Vr = H*d
其中
Vr = 星系的徑向遠離速度
H = 哈勃常數=87 km/(sec*Mpc)
d = 星系與地球的距離以Mpc 為單位。
哈柏定律是一個很重要的距離指標,量得星系的遠離速度,透過哈柏定律可以知道星系的距離。
例:
室女群(Vigro cluster) 的徑向遠離速度為 Vr =1180 km/sec, 室女群與地球的距離為 d = Vr/H = 1180/70 = 16.8 Mpc。
測距適用范圍:宇宙邊緣。 紅超巨星
假設各星系最亮的紅超巨星絕對亮度都是MV = -8 ,受解析極限的限制,適用范圍與光譜視差法相同。測距適用范圍:~7Mpc。
新星
假設各星系最亮的新星,絕對亮度都是MV = -8。測距適用范圍:~20 Mpc。
HⅡ 區
假設其他星系最亮的HⅡ區之大小,和本銀河系相當。(定H Ⅱ區的邊界困難,不準度很高) 行星狀星雲
假設星系行星狀星雲,光度分布的峰值在MV = - 4.48。測距適用范圍:~30 Mpc。
球狀星團
假設星系周圍的球狀星團,光度分布的峰值在MV = - 6.5。測距適用范圍:~50 Mpc。
Faber-Jackson 關系、D-σ關系
Faber-Jackson 關系與Tulley-Fisher 關系類似,適用於橢圓星系。Faber-Jackson 關系:橢圓星系邊緣速率分布寬度σ的四次方與星系的光度成正比。
D-σ關系:橢圓星系邊緣速率分布寬度σ與星系的大小D 成正比。測距適用范圍:> 100 Mpc。
星系
假設其他更遠的星系團,與室女星系團中最亮的星系都具有相同的光度MV = -22.83。測距適用范圍:~4,000 Mpc。

6. 如何測量天體間的距離

三角視差法

測量天體之間的距離可不是一件容易的事。 天文學家把需要測量的天體按遠近不同分成好幾個等級。離我們比較近的天體,它們離我們最遠不超過100光年(1光年=9.461012千米),天文學家用三角視差法測量它們的距離。三角視差法是把被測的那個天體置於一個特大三角形的頂點,地球繞太陽公轉的軌道直徑的兩端是這個三角形的另外二個頂點,通過測量地球到那個天體的視角,再用到已知的地球繞太陽公轉軌道的直徑,依靠三角公式就能推算出那個天體到我們的距離了。稍遠一點的天體我們無法用三角視差法測量它和地球之間的距離,因為在地球上再也不能精確地測定他它們的視差了。

移動星團法

這時我們要用運動學的方法來測量距離,運動學的方法在天文學中也叫移動星團法,根據它們的運動速度來確定距離。不過在用運動學方法時還必須假定移動星團中所有的恆星是以相等和平行的速度在銀河系中移動的。在銀河系之外的天體,運動學的方法也不能測定它們與地球之間的距離。

造父視差法(標准燭光法)

物理學中有一個關於光度、亮度和距離關系的公式。S∝L0/r2

測量出天體的光度L0和亮度S,然後利用這個公式就知道天體的距離r。光度和亮度的含義是不一樣的,亮度是指我們所看到的發光體有多亮,這是我們在地球上可直接測量的。光度是指發光物體本身的發光本領,關鍵是設法知道它就能得到距離。天文學家勒維特發現「造父變星」,它們的光變周期與光度之間存在著確定的關系。於是可以通過測量它的光變周期來定出廣度,再求出距離。如果銀河系外的星系中有顆造父變星,那麼我們就可以知道這個星系與我們之間的距離了。那些連其中有沒有造父變星都無法觀測到的更遙遠星系,當然要另外想辦法。

三角視差法和造父視差法是最常用的兩種測距方法,前一支的尺度是幾百光年,後一支是幾百萬光年。在中間地帶則使用統計方法和間接方法。最大的量天尺是哈勃定律方法,尺度達100億光年數量級。

哈勃定律方法

1929年哈勃(Edwin Hubble)對河外星系的視向速度與距離的關系進行了研究。當時只有46個河外星系的視向速度可以利用,而其中僅有24個有推算出的距離,哈勃得出了視向速度與距離之間大致的線性正比關系。現代精確觀測已證實這種線性正比關系

V = H0×d

其中v為退行速度,d為星系距離,H0=100h0km.s-1Mpc(h0的值為0<h0<1)為比例常數,稱為哈勃常數。這就是著名的哈勃定律。

利用哈勃定律,可以先測得紅移Δν/ν通過多普勒效應Δν/ν=V/C求出V,再求出d。

哈勃定律揭示宇宙是在不斷膨脹的。這種膨脹是一種全空間的均勻膨脹。因此,在任何一點的觀測者都會看到完全一樣的膨脹,從任何一個星系來看,一切星系都以它為中心向四面散開,越遠的星系間彼此散開的速度越大。

7. 測量天體的距離的方法有哪幾種

一般是用三角法,比如說地球在春分點和秋分點時分別觀測一顆恆星對地球的角度,然後以公轉軌道半徑為基線,算出它距地球的距離

對於較近的天體(500光年以內)採用三角法測距。
500--10萬光年的天體採用光度法確定距離。
10萬光年以外天文學家找到了造父變星作為標准,可達5億光年的范圍。
更遠的距離是用觀測到的紅移量,依據哈勃定理推算出來的。
參考資料:吳國盛 《科學的歷程》

同的天體距離要有不同的方法,摘抄如下:

天體測量方法

2.2.2光譜在天文研究中的應用

人類一直想了解天體的物理、化學性狀。這種願望只有在光譜分析應用於天文後才成為可能並由此而導致了天體物理學的誕生和發展。通過光譜分析可以:(1)確定天體的化學組成;(2)確定恆星的溫度;(3)確定恆星的壓力;(4)測定恆星的磁場;(5)確定天體的視向速度和自轉等等。

2.3天體距離的測定
人們總希望知道天體離我們有多遠,天體距離的測量也一直是天文學家們的任務。不同遠近的天體可以采不同的測量方法。隨著科學技術的發展,測定天體距離的手段也越來越先進。由於天空的廣袤無垠,所使用測量距離單位也特別。天文距離單位通常有天文單位(AU)、光年(ly)和秒差距(pc)三種。

2.3.1月球與地球的距離

月球是距離我們最近的天體,天文學家們想了很多的辦法測量它的遠近,但都沒有得到滿意的結果。科學的測量直到18世紀(1715年至1753年)才由法國天文學家拉卡伊(N.L.Lacaille)和他的學生拉朗德(Larand)用三角視差法得以實現。他們的結果是月球與地球之間的平均距離大約為地球半徑的60倍,這與現代測定的數值(384401千米)很接近。

雷達技術誕生後,人們又用雷達測定月球距離。激光技術問世後,人們利用激光的方向性好,光束集中,單色性強等特點來測量月球的距離。測量精度可以達到厘米量級。

2.3.2太陽和行星的距離

地球繞太陽公轉的軌道是橢圓,地球到太陽的距離是隨時間不斷變化的。通常所說的日地距離,是指地球軌道的半長軸,即為日地平均距離。天文學中把這個距離叫做一個「天文單位」(1AU)。1976年國際天文學聯合會把一個天文單位的數值定為1.49597870×1011米,近似1.496億千米。

太陽是一個熾熱的氣體球,測定太陽的距離不能像測定月球距離那樣直接用三角視差法。早期測定太陽的距離是藉助於離地球較近的火星或小行星。先用三角視差法測定火星或小行星的距離,再根據開普勒第三定律求太陽距離。1673年法國天文學家卡西尼(Dominique Cassini)首次利用火星大沖的機會測出了太陽的距離。

許多行星的距離也是由開普勒第三定律求得的,若以1AU為日地距離,「恆星年」為單位作為地球公轉周期,便有:T2=a3。若一個行星的公轉周期被測出,就可以算出行星到太陽的距離。如水星的公轉周期為0.241恆星年,則水星到太陽的距離為0.387天文單位(AU)。

2.2.3恆星的距離

由於恆星距離我們非常遙遠,它們的距離測定非常困難。對不同遠近的恆星,要用不同的方法測定。目前,已有很多種測定恆星距離的方法:

(1)三角視差法

河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:

sinπ=a/D

若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π

用周年視差法測定恆星距離,有一定的局限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。

天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關系是:

1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米

1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。

(2)分光視差法

對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於周年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。

m - M= -5 + 5logD.

(3)造父周光關系測距法

大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動周期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的「變星」。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化周期是5天8小時46分38秒鍾,稱為「光變周期」。在恆星世界裡,凡跟造父一有相同變化的變星,統稱「造父變星」。

作者: haj520520 2005-5-21 18:44 回復此發言

------------------------------------------------------------------------
2 天體測量方法

1912 年美國一位女天文學家勒維特(Leavitt 1868--1921)研究小麥哲倫星系內的造父變星的星等與光變周期時發現:光變周期越長的恆星,其亮度就越大。這就是對後來測定恆星距離很有用的「周光關系」。目前在銀河系內共發現了700多顆造父變星。許多河外星系的距離都是靠這個量天尺測量的。

(4)譜線紅移測距法

20 世紀初,光譜研究發現幾乎所有星系的都有紅移現象。所謂紅移是指觀測到的譜線的波長(l)比相應的實驗室測知的譜線的波長(l0)要長,而在光譜中紅光的波長較長,因而把譜線向波長較長的方向的移動叫做光譜的紅移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望遠鏡觀測到更多的河外星系,又發現星系距我們越遠,其譜線紅移量越大。

譜線紅移的流行解釋是大爆炸宇宙學說。哈勃指出天體紅移與距離有關:Z = H*d /c,這就是著名的哈勃定律,式中Z為紅移量;c為光速;d為距離;H為哈勃常數,其值為50~80千米/(秒·兆秒差距)。根據這個定律,只要測出河外星系譜線的紅移量Z,便可算出星系的距離D。用譜線紅移法可以測定遠達百億光年計的距離。

o(∩_∩)o 如果我的回答對您有幫助,記得採納哦,感激不盡。

8. 科學家是如何測量天體間的距離的有什麼依據

測定天體由近及遠主要有以下幾種方法,它們使用的距離越來越遠,但是精確度也越來越差。
1.雷達波法:直接向天體發射雷達波,通過雷達被反射的時間確定距離。適用於太陽系內天體。
2.三角視差法:通過地球繞太陽的公轉引起的觀測天體位置的變化來確定天體的距離。適用於1000光年以內天體。
3.造父變星法:通過造父變星的亮度與光度變化周期之間的關系來確定天體的距離。適用於幾百萬光年以內(能分辨出一個星系內的造父變星)
4.光譜光度法:利用主序星的亮度和光譜類型的關系確定距離,適用於幾千萬光年以內(能辨編出藍巨星——最明亮的主序星)
5.I型超新星法:I型超新星的亮度是一個定值,通過測定它來測定天體的距離(適用於所有能有I型超新星的星系,不過比較少)
6.哈勃定律法:通過天體退行速度和距離之間的關系來確定天體的距離(所有星系)。

9. 星星離我們有多遠最初測量天體距離的方法是什麼

《星星離我們有多遠》最初測量天體距離的方法是三角視差法。

三角視差法是一種利用不同視點對同一物體的視差來測定距離的方法。對同一個物體,分別在兩個點上進行觀測,兩條視線與兩個點之間的連線可以形成一個等腰三角形,根據這個三角形頂角的大小,就可以知道這個三角形的高,也就是物體距觀察者的距離。

(9)測量天體距離的方法擴展閱讀:

測量天體之間的距離不是一件容易的事, 天文學家把需要測量的天體按遠近不同分成好幾個等級。離我們比較近的天體,它們離我們最遠不超過100光年(1光年=9.46×10^12千米,即9.46萬億公里),天文學家用三角視差法測量它們的距離。

就能推算出那個天體到我們的距離了。稍遠一點的天體我們無法用三角視差法測量它和地球之間的距離,因為在地球上再也不能精確地測定它們的視差了。

10. 怎麼測量星球和星球之間的距離

具體如下:

閱讀全文

與測量天體距離的方法相關的資料

熱點內容
101乘87簡便運算方法 瀏覽:335
小米搜狗輸入法快捷鍵設置在哪裡設置方法 瀏覽:965
鍋底清洗有哪些方法 瀏覽:848
檸檬水怎麼製作方法 瀏覽:468
peikko螺栓連接方法 瀏覽:752
真空壓力表使用方法 瀏覽:616
插花中可以採用哪些顏色搭配方法 瀏覽:742
雙控開關燈管連接方法 瀏覽:485
致病菌分析方法 瀏覽:525
點贊操作方法視頻 瀏覽:559
缺牙如何處理方法 瀏覽:103
水果盒的簡單製作方法 瀏覽:857
不銹鋼宣傳牌安裝方法 瀏覽:448
解決黑鼠最好的方法 瀏覽:464
台式電腦機箱無線連接方法 瀏覽:295
雌鴿下軟蛋的治療方法 瀏覽:270
對公司財務分析的方法 瀏覽:750
手竿玉米釣草魚技巧和方法 瀏覽:526
a4紙折籃子簡單的方法 瀏覽:8
淼淼瘦腿霜使用方法 瀏覽:812