1. 表面粗糙度測量方法
表面粗糙度測量方法:
1、比較法
比較法測量簡便,使用於車間現場測量,常用於中等或較粗糙表面的測量。方法是將被測量表面與標有一定數值的粗糙度樣板比較來確定被測表面粗糙度數值的方法。比較時可以採用的方法:Ra>1.6μm時用目測,Ra1.6~Ra0.4μm時用放大鏡,Ra<0.4μm時用比較顯微鏡。
比較時要求樣板的加工方法,加工紋理,加工方向,材料與被測零件表面相同。
2、觸針法
利用針尖曲率半徑為2微米左右的金剛石觸針沿被測表面緩慢滑行,金剛石觸針的上下位移量由電學式長度感測器轉換為電信號,經放大、濾波、計算後由顯示儀表指示出表面粗糙度數值,也可用記錄器記錄被測截面輪廓曲線。一般將僅能顯示表面粗糙度數值的測量工具稱為表面粗糙度測量儀,同時能記錄表面輪廓曲線的稱為表面粗糙度輪廓儀。這兩種測量工具都有電子計算電路或電子計算機,它能自動計算出輪廓算術平均偏差Ra,微觀不平度十點高度Rz,輪廓最大高度Ry和其他多種評定參數,測量效率高,適用於測量Ra為0.025~6.3微米的表面粗糙度。
3、光切法
雙管顯微鏡測量表面粗糙度,可用作Ry與Rz參數評定,測量范圍0.5~50。
4、干涉法
利用光波干涉原理(見平晶、激光測長技術)將被測表面的形狀誤差以干涉條紋圖形顯示出來,並利用放大倍數高(可達500倍)的顯微鏡將這些干涉條紋的微觀部分放大後進行測量,以得出被測表面粗糙度。應用此法的表面粗糙度測量工具稱為干涉顯微鏡。這種方法適用於測量Rz和Ry為0.025~0.8微米的表面粗糙度。
表面粗糙度(surfaceroughness)是指加工表面具有的較小間距和微小峰谷的不平度。其兩波峰或兩波谷之間的距離(波距)很小(在1mm以下),它屬於微觀幾何形狀誤差。表面粗糙度越小,則表面越光滑。表面粗糙度一般是由所採用的加工方法和其他因素所形成的,例如加工過程中刀具與零件表面間的摩擦、切屑分離時表面層金屬的塑性變形以及工藝系統中的高頻振動等。由於加工方法和工件材料的不同,被加工表面留下痕跡的深淺、疏密、形狀和紋理都有差別。
2. 表面物理學的內容
理想的晶體表面具有二維周期性,其單位網格由基矢a1和a2決定,根據對稱性的要求,可能形成的二維單位網格有五種,如圖1所示,這五種格子常稱為二維布喇菲格子。由於表面原子受力的情況與體內不同,或由於有外來原子的吸附,最表面層原子常會有垂直於或傾斜於表面的位移,表面下的數層原子也會有相應的垂直或橫向位移,因而表面單位網格的基矢b1和b2與理想的表面不同,這種現象稱為表面再構,如果表面原子只有垂直於表面的運動,則稱為表面弛豫。表面結晶學的主要研究內容是弄清b1、b2與a1、a2之間的關系。如b1=pa1,b2=qa2,p和q都是整數,常用下述符號來描寫晶體表面結構 R(hkl) p×q,式中R是元素的符號,(hkl)代表密勒指數是hkl的晶面。如果再構是由吸附物A引起的,則可用符號 R(hkl)p×q-A或 A/R(hkl)p×q。 如果表面和襯底單位網格的基矢並不平行,b1與a1、b2與a2之間有相同的夾角α,則常用下述符號來標志表面的再構 R(hkl)p×q-α。
要定量地研究表面,必須獲得表面所有原子的坐標信息,為此早期採用的實驗方法是低能電子衍射(LEED)。把能量在5~500eV范圍的電子沿近於正入射的方向射向晶體表面,通過在熒光屏上觀察到的衍射點可以獲得有關表面的單位網格的信息。對若干衍射斑點記錄斑點強度隨電子能量變化的曲線(I-V線),並對實驗結果用根據一定的幾何構形計算的理論曲線加以擬合,從而定出原子在單位網格中的位置,這就是LEED結晶學研究表面結構的方法。利用這種方法,研究了許多清潔金屬表面的弛豫和再構、金屬表面上的吸附、半導體表面的弛豫和再構等。圖2給出目前研究得最清楚的而且認識比較一致的 GaAs(110)表面的結構。在表面上的砷原子向外弛豫,而鎵原子則向內移動,表面的As-Ga鍵與無弛豫的表面的As-Ga鍵之間有一個夾角為ω1的傾斜。由於電子在晶體表面的多重散射增加了LEED結晶學在理論分析上的復雜性。此外,也可用中能電子衍射(MEED)和高能電子衍射 (RHEED)來研究表面結構。
表面擴展X 射線吸收精細結構(SEXAFS)是近年來發展起來的研究表面結構的另一手段。當吸附在襯底 S上的原子A吸收X 射線後,從芯態發射的光電子可受到周圍原子的散射,出射電子波與散射電子波之間有干涉作用形成有起伏的末態。這個有起伏的末態使X 射線吸收的幾率在吸收邊後有振盪現象,振盪的幅度與周期包含了吸附原子 A的近領數及其和周圍原子所形成的鍵長的信息。鍵長確定的准確度達±0.03┱。 利用能量為 60meV的氦原子在固體表面的彈性散射可以研究襯底和吸附層的周期性結構。足夠強的原子束和表面的強相互作用,使這種探測方法具有相當高的靈敏度。探測深度只有3~4┱,衍射峰的強度主要取決於氦原子和表面原子的相互作用勢,如何確定與實際情況最接近的勢是當前的一個困難問題。
將能量在0.1~3MeV的 He或 H離子束準直沿著晶軸入射,由於離子束首先遭到晶軸第一個原子的散射,入射離子的軌跡形成一個影錐。由於入射波束的波長遠小於點陣常數,可把散射過程看作似彈性碰撞,通過測量在影錐中的原子的散射可以測定第一層原子的位移。
表面成分
表面成分的確定是表面研究中的另一重要課題。利用原子芯態能級的位置和原子的質量這兩個特徵可以確認原子的類別。
X 射線光電子譜(XPS)是通過測量入射X射線打出表面外的光電子的動能Ek來確定芯態能級的位置Eb,從而定出原子的類型及其與周圍原子成鍵的信息。芯態能量Eb和入射光子能量 啚ω,出射光電子動能Ek之間的關系為 ,
φs是功函數(圖3)。在固體表面上,Eb的數值隨著與周圍原子成鍵的情況而有所移動,利用這種「化學位移」可以得到有關成鍵的信息。
俄歇電子譜 (AES)利用涉及三個能級的過程來確認原子,基本過程如圖4所示。用能量在3~5keV的電子束e入射到晶體表面,把處於A能級某一芯態電子激發到體外,較高能級B的電子可通過無輻射復合過程填滿空穴,並把多餘的能量用來激發處於 C能級的另一個電子。通過測量這些逸出電子的數目隨能量變化的信息可以識別元素。圖4所示的過程稱作俄歇過程,它涉及了A、B、C三個能級。當元素與其他元素形成化學鍵時,也會引起譜線的移動(俄歇電子譜)。
出現電勢譜(APS) 測量足以產生芯態空穴的最低能量(見出現電勢譜,圖1)。由於芯態能量隨元素而異,因此通過這個能量的測定可以鑒別元素。空穴的產生可以通過填充空穴時所涉及的俄歇過程或所發出的軟 X射線來探測。前者稱為俄歇出現電勢譜(AEAPS),後者為軟X 射線出現電勢譜(SXAPS)。如果測量入射電子束的反射,由於參與激發芯態電子的入射電子的能量損失而不在反射中出現,因此測量反射束強度的減弱也可探測空穴的存在,這個方法稱為消隱出現電勢譜(DAPS)(見出現電勢譜)。
當低能(200~2000eV)惰性氣體離子He、Ne、Ar等入射到表面時,通過彈性碰撞,由在一定角度內散射離子可測出表面原子的質量。由能量和動量守恆定律,能量為E0,散射到實驗室參考系θ角中能量為E質量為M1的離子束,E和E0的關系可表示為
這個方法稱為離子散射譜(ISS),上式對能量更高的離子也適用,只是實驗上多採用θs≈π的背散射。對於低能離子散射,θs≈π/2。
如將能量為2~20keV的氬、氮、氧或銫離子入射到固體表面上,通過一系列的碰撞過程,次級離子及離子集團逸出體外,用質譜儀確認離子的品類,這種方法稱為次級離子質譜(SIMS)。
對於有吸附物的表面,也可通過脫附過程來確認吸附物的類型以及吸附物與襯底的結合能。可通過加熱、電子轟擊和光照射來產生脫附,分別稱為熱脫附(TDS)、電子感生脫附(ESD)或光子感生脫附(PSD)。對於熱脫附,脫附的激活能和產生脫附峰的絕對溫度成正比。當用能量在10~1000eV的電子轟擊表面時, 入射電子通過碰撞可將與襯底成鍵的原子中的電子由成鍵態激發到反鍵態,這個受激態和襯底的排斥勢可使原子以離子態離開表面,常把這種機理稱為門澤爾 (Menzel)-戈默(Gomer)-雷德黑德 (Redhead)模型。離子逃逸的方向形成分立的錐形。錐軸取決於被脫附斷裂的分子鍵的取向。通過測量逃逸離子束的角分布,可以研究吸附類型,這個方法稱為電子激發脫附離子角分布(ESDIAD)。對於過渡金屬氧化物M.L.諾特克和P.J.菲布爾曼認為電子束轟擊表面後,可在金屬離子的芯態產生空穴,氧離子可通過離子間的俄歇過程,激發俄歇電子,成為中性氧原子或荷正電的氧離子離開表面(圖6),因此 ESD可以用來做為研究表面吸附原子價態的有力工具。
在弄清表面結構和表面成分後,表面物理的主要研究內容之一是表面電子態和有關的物理性質。光電子能譜是研究表面電子態的重要方法之一。真空紫外輻射的光子可將固體體內價態中的電子或表面態的電子激發到較高能態,通過一系列的碰撞過程,逃逸出表面,測量這些電子的能量分布曲線(EDC)可得到有關佔有狀態密度的信息。由於表面態電子和體內電子服從不同的選擇定則,可通過測量光子能量不同的能量分布曲線,其中不隨光子能量變化而移動的峰即相應於表面態的峰。近年來,由於同步輻射的發展,可獲得能量連續可變的光源。選擇不同的光子能量可使光電子具有最小的逃逸深度,從而提高表面靈敏度,如果收集在某個角度內出射的光電子譜,則可得出表面電子態中佔有態的能量色散關系。
測量總的光電子數隨光子能量變化的譜稱為產額譜,這個方法最早用來探測能隙中表面態的密度,當電子從佔有態被激發到略高於真空能級的空態,這個電子可通過俄歇過程來激發電子,也可在經受多次碰撞後逃逸出體外。測量總的產額隨光子能量的變化可靈敏地探測能隙中的狀態。利用同步輻射,光子可將價帶中的電子激發到導帶或空的表面態,通過控制激發逃逸深度在 5~30┱的光電子,可探測表面態。當吸收光子後,激發的芯態電子可通過俄歇過程而退激發,也可通過和價帶有關的激子的直接復合,或是與表面空態的直接復合,由此而產生的快電子可再次通過電子、電子之間的相互作用產生較慢的次級電子。在總的產額譜中,快的和慢的電子都被收集,如果只收集能量在5eV以下的次級電子,這種分析方法稱為部分產額譜(PYS)。如測量能量高於5eV某一個范圍內的產額譜,則稱為恆定末態譜(CFS),通過這種模式可以研究初態和激子的影響;如果同步地改變入射光子和電子分析器的能量,得到恆定初態譜(CIS)。如果適當選擇E,使價帶發射光電子的幾率小,並增加芯態俄歇衰減的產額,就可以大大增強芯態到表面態的躍遷。利用光電子發射的衍射現象也可研究表面結構。
如將50~200eV 左右的低能電子束入射到固體表面,測量反射電子的能量損失如圖7所示,通過這種能量損失譜可得到體等離激元、表面等離激元等信息。能量損失也可用於激發帶間的躍遷或芯態能級間的躍遷。
利用電子的隧道過程也可探測表面電子態。當離子接近固體表面時,表面價態中電子可通過隧道效應和離子中和,放出的能量可用來把固體價態的電子激發到體外,利用這種過程來探測表面電子態的方法稱為離子中和譜(INS)。由於只有在非常靠近表面的電子,才可能通過隧道效應與離子的空態復合,也只有在表面處激發的俄歇電子才能逸出體外,因此離子中和譜是對表面非常靈敏的探測手段。如果在中和過程中被激發的是在離子激發態的電子,這種過程稱為亞穩退激譜(MDS)。
場發射顯微鏡(FEM)是根據冷陰極發射原理,把陰極腐蝕成半徑為1~2000┱的尖端, 施加負電壓後電子可通過隧道效應穿透到固體表面外並打在陰極前面的熒光屏上。由於電子穿透隧道的幾率與外加電場和針尖的功函數有關,因此打在熒光屏上電子的多少就是針尖材料功函數大小的復制圖。通過圖形的變化可以了解氣體原子在針尖表面的吸附、分解和擴散等過程。
為了提高解析度,在場發射顯微鏡的基礎上又發展了場離子顯微鏡(FIM)。把金屬樣品做成針尖狀,然後加正電壓,在針尖周圍充以低壓惰性氣體,氣體的電子可通過隧道效應進入樣品費密能級以上的空態,帶正電的離子被針尖場所斥,打在熒光屏上並顯示出一定的圖樣,這個圖樣可提供有關表面分子電離、化學反應、分解以及蒸發的信息。在場離子顯微鏡的熒光屏上開一小孔,並將它與飛行時間質譜儀相結合,則構成原子探測束。
由於表面可被看為破壞了點陣周期性的缺陷,因此表面的原子具有和體內原子不同的振動模式。當表面有分子的覆蓋層,通過研究這些覆蓋層的振動模式可以測定吸附分子的結構,確定分子在表面的吸附位置。通過觀察某些振動模式的激發,可以得到吸附分子相對於襯底的取向,研究頻率隨覆蓋度的變化,可以了解覆蓋層的橫向相互作用。可以用紅外反射譜(IRAS)、高分辨電子能量損失譜(HREELS)和非彈性電子隧道譜(IETS)來研究表面的振動。紅外反射譜的優點是解析度高,可在周圍環境加壓來模擬真正催化作用的情況,缺點是靈敏度低。高分辨電子能量損失譜具有高的靈敏度,但解析度低。這個方法所根據的原理同前面所介紹的能量損失譜同,但是由於聲子的能量只有數十毫電子伏,因此要求特殊設計的高分辨的探測器以及高度單色性的電子槍。非彈性隧道譜(IETS)是利用金屬-絕緣體-金屬(超導態)的夾心結構中的隧道過程(見約瑟夫森效應)來研究吸附在絕緣層的體系的振動譜,可由此決定吸附分子的分子結構,確定吸附分子的表面濃度、吸附物的取向、吸附物之間的相互作用等。
1,印模法:此種方法多用於不能用儀器直接測量的或內表面,可用塑性材料作成塊狀的印模,貼合在被測表面上,待取下後貼合面上即復制出被測表面的輪廓狀況,然後對此印模進行測量,確定其粗糙度等級。
2,綜合測量法:它是利用被測表面的某種特徵來間接評定表面粗糙度的級別,而不能測峰谷不平高度的具體數值。直接量法:利用光學、電動儀器對零件表面直接量取有關參數,確定粗糙度等級。
3比較測量法:將被測表面與標准粗糙度樣板作比較,評定粗糙度等級。粗糙度樣板(又稱粗糙度標准塊),是以不同的加工方法(車、刨、平銑、立銑、磨等)製成的一組金屬塊。
4,直接量法:利用光學、電動儀器對零件表面直接量取有關參數,確定粗糙度等級。
4. 表面粗糙度都有哪些測量方法
表面粗糙度測量方法:
1、比較法
比較法測量簡便,使用於車間現場測量,常用於中等或較粗糙表面的測量。方法是將被測量表面與標有一定數值的粗糙度樣板比較來確定被測表面粗糙度數值的方法。比較時可以採用的方法:Ra>1.6μm時用目測,Ra1.6~Ra0.4μm時用放大鏡,Ra<0.4μm時用比較顯微鏡。
比較時要求樣板的加工方法,加工紋理,加工方向,材料與被測零件表面相同。
2、觸針法
利用針尖曲率半徑為2微米左右的金剛石觸針沿被測表面緩慢滑行,金剛石觸針的上下位移量由電學式長度感測器轉換為電信號,經放大、濾波、計算後由顯示儀表指示出表面粗糙度數值,也可用記錄器記錄被測截面輪廓曲線。一般將僅能顯示表面粗糙度數值的測量工具稱為表面粗糙度測量儀,同時能記錄表面輪廓曲線的稱為表面粗糙度輪廓儀。這兩種測量工具都有電子計算電路或電子計算機,它能自動計算出輪廓算術平均偏差Ra,微觀不平度十點高度Rz,輪廓最大高度Ry和其他多種評定參數,測量效率高,適用於測量Ra為0.025~6.3微米的表面粗糙度。
3、光切法
雙管顯微鏡測量表面粗糙度,可用作Ry與Rz參數評定,測量范圍0.5~50。
4、干涉法
利用光波干涉原理(見平晶、激光測長技術)將被測表面的形狀誤差以干涉條紋圖形顯示出來,並利用放大倍數高(可達500倍)的顯微鏡將這些干涉條紋的微觀部分放大後進行測量,以得出被測表面粗糙度。應用此法的表面粗糙度測量工具稱為干涉顯微鏡。這種方法適用於測量Rz和Ry為0.025~0.8微米的表面粗糙度。
表面粗糙度(surfaceroughness)是指加工表面具有的較小間距和微小峰谷的不平度。其兩波峰或兩波谷之間的距離(波距)很小(在1mm以下),它屬於微觀幾何形狀誤差。表面粗糙度越小,則表面越光滑。表面粗糙度一般是由所採用的加工方法和其他因素所形成的,例如加工過程中刀具與零件表面間的摩擦、切屑分離時表面層金屬的塑性變形以及工藝系統中的高頻振動等。由於加工方法和工件材料的不同,被加工表面留下痕跡的深淺、疏密、形狀和紋理都有差別。
5. 觀察金屬材料微觀結構,形貌的常用方法有哪些
隨著科學技術的不斷發展,越來越多的領域,如材料科學、醫學、地質學和生物工程學等,需要精確了解各種材料的微觀形貌和微觀結構。這些材料可以包括為特定目的設計製造的金屬或陶瓷材料、天然提取物、化學反應生成物、或經過表面處理或者磨削得到的材料。這些材料機械性能和化學物理特性往往與其微觀形貌和結構密切相關。應用電鏡研究其表面結構、形狀、三維尺寸和分散狀態以及測量某些數據具有重要意義川。但是,對於這些材料的超細粒子,由於其具有較大的表面吉布斯自由能,粒子之間有較強自發集聚趨勢,很容易形成團聚,嚴重影響微粒子的觀察和測量。
因此,利用電鏡研究微粒的很重要一步在於制備出沒有顆粒堆積、又有一定密度,圖象清晰的樣品。本文就制備掃描電鏡粉末樣品的方法進行一些探討。微粒制備成掃描電鏡的樣品,一般需要經過分散、鋪放、鍍導電膜3個步驟。微粒的分散一般認為,實現顆粒分散的基礎是,增大顆粒表面電性,增強顆粒表面親水性以及在顆粒表面形成空間位阻效應。分散介質在分散體系中,分散介質的性質十分重要。顯然,分散介質必須不與微粒物質起化學反應;分散介質應是無色透明,並能較好地潤濕被測的微粒;分散介質揮發的蒸氣對儀器沒有腐蝕作用,對人體也不應有危害。
6. 冷軋鋼板表面結構標准FB,FC之類的具體是什麼
SAE J911-1998 冷軋鋼板表面粗糙度和峰值數測量方法
級 別 代 號
較高級的精整表面 FB(O3)
高級的精整表面 FC(O4)
FB,FC——表示冷軋鋼板表面結構的精整表面的分級代號。
7. 實際表面的結構特點
固體表面幾個原子層中原子的排列情況。包括表面單位網格的形狀和大小,它相對於基底單位網格的取向,表面單位網格中原子的數目和相對位置(鍵長和鍵角等),最外層原子與第二、三……層原子的距離以及表面各層中原子的種類和排列狀況等。晶體中原子排列的周期性在垂直於表面的方向上於表面處突然中斷,使表面幾層的原子所受內外兩側的力失去平衡,通過自給作用達到新的平衡後,表層原子的鍵長和鍵角均與體內不同,一般表現為表層原子沿垂直於表面的方向產生一定位移。位移可向外(膨脹),也可向內(收縮),此稱為表面弛豫,表面區中不同原子層的弛豫程度不同。表層內原子新的平衡位置也可表現為沿表面產生了橫向移動,而且其二維周期性也與體內不同,此稱為表面重構(或表面再構)。表面區內還可能存在各種缺陷,例如空位、填隙原子、階梯、疇界等各種偏離二維周期性的結構。來自環境的外來原子或分子由於物理作用和化學作用粘附於固體表面的過程稱為吸附。吸附物可在固體表面形成無序的或有序的覆蓋層。有序覆蓋層一般形成重構結構,其二維周期不同於襯底的周期。
研究表面結構的最有效的實驗手段是低能電子衍射,此外還有多種其他實驗方法。
8. 粉體表面改性效果檢測分析
礦物粉體經表面改性後,其改性效果的檢測評價主要用以下幾種方法。
一、應用結果評價法
應用結果評價法,是將經改性後的粉體應用於目標產品或體系中,直接檢測最終產品性能的變化,它是對粉體表面改性效果最直接的評價。這種方法雖然人力財力耗費大,但由於可靠性高,因此在一些研究或生產應用中被廣泛採用。
二、預先評價法
該法是對改性產品的一些物化性質和表面特徵進行測試,比較粉體改性前後指標的變化,對改性產品的改性效果進行預先評價,其主要方法有:
1.潤濕性評價法
無機填料用有機表面改性劑處理後,表面由極性變為非極性,表面能降低,對水呈現出較強的非浸潤性特性,而對非極性的有機物則呈現出相容性。因此,接觸角、滲透時間(透水速度)、吸油率、活化指數等指標是評價粉體與聚合物之間相容性好壞的主要指標之一,潤濕性好的粉體,填加到聚合物中的流動性好,易於分散,混料容易且均勻,不易出現顆粒的團聚。
(1)測定界面接觸角
改性粉體在極性液體中的接觸角越大,在非極性液體中的接觸角越小,即粉體表面疏水性越強,改性效果越好。通常用接觸角測定儀測定其接觸角,方法是壓片直接測量法,即將礦物粉體壓實成塊或片,在接觸角測定儀上直接測量。測定潤濕接觸角的方法還有很多,但可靠的卻很少。
(2)測定透水速度
由於接觸角難以准確測定,因此,在研究中也常採用一些簡便的方法來測定試樣的疏水性或潤濕性,如測定其透水速度。具體做法是將未改性和改性後的試樣在精密壓力機上壓製成塊,然後在每塊試樣上滴加相同量的蒸餾水,測定其浸透時間。一般來說,經有機物表面改性後試樣的透水速度大大低於末改性試樣。因此,透水速度可作為試樣改性效果的相對指標。
(3)測定分散性
通過試樣在極性溶劑(如水)和非極性溶劑(如苯)中的分散性來相對比較表面改性的結果,因為無機粉體物料經有機表面改性劑包覆後在水中的分散性變差,而在苯中的分散性變好。
(4)測定吸油率
其方法是,在玻璃捧攪拌下,將蓖麻油通過滴定管加入到已知量的粉體中,當粉體剛好黏結成球團時,記錄此時的用油量。吸油率=蓖麻油用量/粉料用量。
(5)活化指數
對於用有機表面改性劑如非離子型表面活性劑處理後的無機填料或顏料,還可採用「活化指數」來表徵表面處理的效果。無機填料或顏料物體一般相對密度較大,而且表面呈極性狀態,在水中易自然沉降。而有機表面改性劑是非水溶性的表面活性劑,經表面改性處理後的無機粉體,表面由極性變為非極性,對水呈現出較強的非浸潤性。這種非浸潤性的細小顆粒,在水中由於巨大的表面張力,使其如同油膜一樣漂浮不沉。根據這一現象,提出「活化指數」的概念,用H表示,H=漂浮部分質量/樣品總質量。可見,未經表面活化(即改性)處理的無機粉體,H=0,活化處理最徹底時,H=1.0。H由0~1.0的變化過程,可反映出表面活化程度由小至大,也即表面處理效果好壞的情況。在無機填料的有機表面改性工藝中,表面改性劑的種類和用量對填充體系的性能有顯著影響,改性劑的用量可參考「活化指數」來確定。所謂最佳用量,即是表面改性劑在填料顆粒表面上覆蓋單分子層的用量,大於此量,則將形成多層物理吸附的界面薄弱層,從而引起被填充物的強度下降;低於最佳用量,則填料顆粒表面改性處理不完全。因此,活化指數可作為表面改性活性無機填料等粉體的一項質量指標,為用有機表面改性劑處理無機填料或顏料提供了一種快捷、實用、可靠的產品質量檢驗方法。
2.表面自由能評價法
絕大多數礦物粉體都具有較大的表面自由能,粉體表面經改性附著後,表面能都要降低,可由此來評價改性效果。
3.測定表面結構和成分的方法
表面分析常用的實驗方法主要是一些能譜方法和量子力學效應的顯微技術。這些能譜按其物理過程可分為電子能譜、離子能譜、光譜、聲子譜、熱分析等。主要研究表面結構、原子位型、化學鍵特性等,主要方法有:
(1)紅外光譜
紅外光譜法在粉體表面改性效果研究中是一種極其重要的手段。只要表面存在某種官能團或化學鍵,在其紅外光譜圖中就有相應的特徵吸收峰。如礦物粉體用偶聯劑在不同條件下處理後,偶聯劑分子可以吸附或覆蓋在礦物表面,對礦物結構中各種基團的振動能級基本上不產生影響,如果偶聯劑分子與礦物表面發生化學鍵合,則會產生新的能級,並導致其紅外光譜變化或形成新的吸收峰。只有當偶聯劑分子與礦物表面形成化學鍵,才能產生較好的改性效果。因此,對改性前後的粉體樣品進行紅外光譜分析,根據對應特徵峰的變化,就可以揭示改性劑與礦物表面鍵合的類型和性質。
(2)X射線衍射分析
X射線衍射分析是研究固體物質結構變化的最為重要的方法。經改性處理尤其是利用機械力化學改性法處理的礦物粉體,不僅表面性質發生變化,其內部結構或晶型也會隨之變化,用X射線衍射分析研究改性效果,可得到詳細的信息。
(3)其他方法
熱分析、表面分析新技術(如電子能譜等)在揭示改性劑與粉體表面作用機理方面,都是一種有效的手段。
9. 瓷磚的結構表面結構的成份是什麼它的好壞主要看那方面的謝謝!
原材料多由粘土、石英沙等等混合而成。
瓷磚的挑選方法
家庭裝修時都要選購瓷磚,怎樣買到物有所值、稱心如意的瓷磚也有一定的學問,總的來說選購瓷磚的原則是:一看、二聽、三滴水、四尺量。
一、看外觀。瓷磚的色澤要均勻,表面光潔度及平整度要好,周邊規則,圖案完整,從一箱中抽出四五片察看有無色差、變形、缺棱少角等缺陷。
二、聽聲音。用硬物輕擊,聲音越清脆,則瓷化程度越高,質量越好。也可以左手拇指、食指和中指夾瓷磚一角,輕松垂下,用右手食指輕擊瓷磚中下部,如聲音清亮、悅耳為上品,如聲音沉悶、滯濁為下品。
三、滴水試驗。可將水滴在瓷磚背面,看水散開後浸潤的快慢,一般來說,吸水越慢,說明該瓷磚密度越大;反之,吸水越快,說明密度稀疏,其內在品質以前者為優。
四、尺量。瓷磚邊長的精確度越高,鋪貼後的效果越好,買優質瓷磚不但容易施工,而且能節約工時和輔料。用捲尺測量每片瓷磚的大小周邊有無差異,精確度高的為上品。
另外,觀察其硬度,瓷磚以硬度良好、韌性強、不易碎爛為上品。以瓷磚的殘片稜角互相劃痕,察看破損的碎片斷裂處是細密還是疏鬆,是硬、脆還是較軟,是留下劃痕,還是散落的粉末,如屬前者即為上品,後者即質差。
尺寸是否標準是判斷磁磚優劣的關鍵,用捲尺或卡尺測量磁磚的對角線和四邊尺寸及厚度是否均勻,好的瓷磚,聲音脆響,說明瓷質含量高。如果聲音「嗒嗒」帶破茬聲,說明磚內藏有裂紋。
好的磁磚,師傅安裝也方便施工,安裝出來的效果也規范。