導航:首頁 > 安裝方法 > 流速測量儀器基本原理觀測方法

流速測量儀器基本原理觀測方法

發布時間:2022-09-07 04:09:50

① 用什麼方法測量水文流速啊

根據《河流流量測驗規范》(GB50179),流量觀測方法主要有浮標法、流速儀法等,浮標法包括表面浮標法、深水浮標和浮桿法、小浮標法等;流速儀的種類也較多,其中目前水文測驗中較為常用、高效的是ADCP多普勒流速儀。

ADCP的特點是方便、快捷,可定點亦可走測,節省人力物力。ADCP流速儀具體性能參見各廠家網站,以選用適合的儀器,如:
http://www.membertec.com/Newslist.asp?column_id=407&column_cat_id=160

而流量是根據流速和斷面計算得到,因此,流速測量,上述儀器均可滿足要求

② 流量計主要有哪幾種分類測量原理分別是什麼

流量計主要有哪幾種分類?測量原理分別是什麼?

本文詳細詳細介紹流量計的分類和測量原理;如果覺得回答對您有所幫助的話,麻煩您高抬貴手,給美國威盾VTON流量計點個贊!

流量計常用的種類

1、渦街流量計

智能進口渦街流量計是根據卡門(Karman)渦街原理研究生產的,主要用於工業管道介質流體的流量測量,如氣體、液體、蒸氣等多種介質。其特點是壓力損失小,量程范圍大,精度高,在測量工況體積流量時幾乎不受流體密度、壓力、溫度、粘度等參數的影響。無可動機械零件,因此可靠性高,維護量小。儀表參數能長期穩定。渦街流量計採用壓電應力式感測器,可靠性高,可在-20℃~+250℃的工作溫度范圍內工作。有模擬標准信號,也有數字脈沖信號輸出,容易與計算機等數字系統配套使用,是一種比較先進、理想的測量儀器。

渦街流量計是在流體中設置三角柱型旋渦發生體,則從旋渦發生體兩側交替地產生有規則的旋渦,這種旋渦稱為卡門旋渦,旋渦列在旋渦發生體下游非對稱地排列。

2.電磁流量計

電磁流量計(Electromagnetic Flowmeters,簡稱EMF)是20世紀50~60年代隨著電子技術的發展而迅速發展起來的新型流量測量儀表。 比如威盾VTON品牌的新型進口電磁流量計於1968開始銷售;電磁流量計是根據法拉第電磁感應定律製造的用來測量管內導電介質體積流量的感應式儀表。

電磁流量計測量原理是基於法拉第電磁感應定律。流量計的測量管是一內襯絕緣材料的非導磁合金短管。兩只電極沿管徑方向穿通管壁固定在測量管上。其電極頭與襯里內表面基本齊平。勵磁線圈由雙方波脈沖勵磁時,將在與測量管軸線垂直的方向上產生一磁通量密度為B的工作磁場。此時,如果具有一定電導率的流體流經測量管。將切割磁力線感應出電動勢E。電動勢E 正比於磁通量密度B,測量管內徑d與平均流速v的乘積。電動勢E(流量信號)由電極檢出並通過電纜送至轉換器。轉化器將流量信號放大處理後,可顯示流體流量,並能輸出脈沖,模擬電流等信號,用於流量的控制和調節。

3.旋進漩渦氣體流量計

旋進旋渦流量計可廣泛應用於石油、化工、電力、冶金、城市供氣等行業測量各種氣體流量,是目前油田和城市天然氣輸配計量和貿易計量的首選產品。

流量感測器的流通剖面類似文丘利管的型線。在入口側安放一組螺旋型導流葉片,當流體進入流量感測器時,導流葉片迫使流體產生劇烈的旋渦流。當流體進入擴散段時,旋渦流受到迴流的作用,開始作二次旋轉,形成陀螺式的渦流進動現象。該進動頻率與流量大小成正比,不受流體物理性質和密度的影響,檢測元件測得流體二次旋轉進動頻率就能在較寬的流量范圍內獲得良好的線性度。信號經前置放大器放大、濾波、整形轉換為與流速成正比的脈沖信號,然後再與溫度、壓力等檢測信號一起被送往微處理器進行積算處理,最後在液晶顯示屏上顯示出測量結果(瞬時流量、累積流量及溫度、壓力數據)。

4.熱式氣體質量流量計

熱式氣體質量流量計是利用熱傳導原理來測量氣體質量流量的儀表。該類儀表的感測器由兩個基準級熱電阻(鉑RTD)組成。一個是質量速度感測器T1。一個是測量氣體溫度變化的溫度感測器T2。當這兩個熱電阻置於被測氣體中時,其中T1被加熱到T2(被測氣體的溫度)以上的一個恆定的溫度,T2用於感應被測氣體的溫度。當被測氣體流動時,氣體的分子與被加熱的T1發生摩擦帶走熱能,T1的溫度下降,要維持T1,T2恆定的溫度差,T1被加熱要消耗功率。根據熱效應的金氏定律,加熱功率P,溫度差△T與質量流量Q有一定的數字關系,及得出氣體質量流量。

5.靶式流量計

靶式流量計於六十年代開始應用於工業流量測量,主要用於解決高粘度、低雷諾數流體的流量測量,先後經歷了氣動表和電動表兩大發展階段。

當介質在測量管中流動時,因其自身的動能與靶板產生壓差,而產生對靶板的作用力,使靶板產生微量的位移,其作用力的大小與介質流速的平方成正比,其數學公式:

F = Cd·A·ρ·V2/2

F:所受的作用力

Cd:流體阻力系數

A:靶板對測量管軸向投影面積

ρ:工況下介質密度

V:介質在測量管中的特徵流速

6.金屬管浮子流量計

金屬管浮子流表採用可變面積式測量原理生產研究,適用於測量液體,氣體。全金屬結構,有指示型、電遠傳型、耐腐型、高壓型、夾套型、防爆型。具有 0-10mA,4-20mA的標准模擬量信號輸出和現場指示。累積,數字通訊,現場修改測量參數,不同的供電方式功能,帶有磁性過濾器和特殊規格品種。廣泛應用於,石油、化工、發電、制葯、食品、水處理等。復雜,惡劣環境條件,及各種介質條件的流量測量過程中。

金屬管浮子流量計浮子在測量管中,隨著流量的變化,將浮子向上移動,在某一位置浮子所受的浮力與浮子重力達到平衡。此時浮子與孔板(或錐管)間的流通環隙面積保持一定。環隙面積與浮子的上升高度成正比,即浮子在測量管中上升的位置代表流量的大小,變化浮子的位置由內部磁鐵傳輸到外部的指示器,使指示器正確地指示此時的流量值。

7.超聲波流量計

超聲波流量儀表是以「速度差法」為原理,測量圓管內液體流量的儀表。它採用了先進的多脈沖技術、信號數字化處理技術及糾錯技術,使流量儀表更能適應工業現場的環境,計量更方便、經濟、准確。產品達到國內外先進水平,可廣泛應用於石油、化工、冶金、電力、給排水等領域。

超聲波在流動的流體中傳播時就載上流體流速的信息。因此通過接收到的超聲波就可以檢測出流體的流速,從而換算成流量。根據檢測的方式,可分為傳播速度差法、多普勒法、波束偏移法、雜訊法及相關法等不同類型的超聲波流量計。超聲波流量計是近十幾年來隨著集成電路技術迅速發展才開始應用的一種非接觸式儀表,適於測量不易接觸和觀察的流體以及大管徑流量。它與水位計聯動可進行敞開水流的流量測量。使用超聲波流量比不用在流體中安裝測量元件故不會改變流體的流動狀態,不產生附加阻力,儀表的安裝及檢修均可不影響生產管線運行因而是一種理想的節能型流量計。

7.渦輪流量計

渦輪流量計是採用先進的超低功耗單片微機技術研製的渦輪流量感測器與顯示積算一體化的新型智能儀表,具有機構緊湊、讀數直觀清晰、可靠性高、不受外界電源干擾、抗雷擊、成本低等明顯優點。

流體流經感測器殼體,由於葉輪的葉片與流向有一定的角度,流體的沖力使葉片具有轉動力矩,克服摩擦力矩和流體阻力之後葉片旋轉,在力矩平衡後轉速穩定,在一定的條件下,轉速與流速成正比,由於葉片有導磁性,它處於信號檢測器(由永久磁鋼和線圈組成)的磁場中,旋轉的葉片切割磁力線,周期性的改變著線圈的磁通量,從而使線圈兩端感應出電脈沖信號,此信號經過放大器的放大整形,形成有一定幅度的連續的矩形脈沖波,可遠傳至顯示儀表,顯示出流體的瞬時流量和累計量。

③ 尋求液體流速測量的方法

激光多普勒流速測量技術
作者:朱 瑞 編輯:admin 發布時間:2006-5-6
QQ群交流:查看群號|醫葯黃頁|資料下載無憂 新聞摘要:激光多普勒流速測量技術(LDA)是用來測量氣體或液體流速的。這項技術與傳統的測量技術相比具有顯著優勢,它可以精確測量許多不同粒子的速度,而不需要另外的儀器校正。這項測量技術是非侵入式的,具有很高的頻率響應和大的動態范圍。LDA技術常應用在蒸汽流測量、風洞湍流測量和內燃機燃料流測量當中。

激光多普勒流速測量技術(LDA)用來測量氣體或液體流速的。項技術與傳統的測量技術相比具有顯著優勢,它可以精確測量許多不同粒子的速度,而不需要另外的儀器校正。這項測量技術是非侵入式的,具有很高的頻率響應和大的動態范圍。LDA技術常應用在蒸汽流測量、風洞湍流測量和內燃機燃料流測量當中。Compuscope 82G數據採集卡已被證明非常適用於LDA系統數據的採集、存儲和傳輸。

1 LDA原理

系統採用連續調制激光,激光被分成兩束,先經光學系統聚焦後相互垂直入射到粒子流中。在兩束激光交叉處便產生了干涉圖樣。激光束的後向散射經過接收光學系統後聚焦在探測器上,再由探測器實現光電轉換。LDA原理示意圖如圖1所示。

2 干涉圖樣

為了研究光電探測器接收到的信號,必須知道兩束光在交叉點產生的干涉圖樣。如圖2所示,被測對象是一個橢球體表面對應的干涉圖光強分布,光強最大的分布點在干涉圖的中心。需要指出的是�當光束角度K減小時�被測對象將會遠離聚焦光束�它的度將增加而寬度減小。

就像前面提到的那樣�信號是由粒子經過干涉圖樣反射的散射光組成,變化的振幅代表了每個干涉圖光強的變化。

多普勒脈沖串的頻率稱為多普勒頻率。該頻率與干涉圖空間常數(df)相乘可用來測量速度。從圖3可以看出,干涉圖空間常數(df)是由激光波長(λ)除以光束反射角(K)正弦的2倍得到。由於激光波長可以精確測量(精確到0.01%),因此採用LDA技術可以非常精確地測量流體速度。

3 信號捕獲和數據處理

多普勒脈沖串可由Compuscope 82G數據採集卡來捕獲。由於多普勒脈沖串是非周期信號,因此Compuscope 82G的觸發電平被設置在高於雜訊的測量值的起始電平點上。觸發後可以用自動存儲模式(AutoSave)將數據和時間保存下來。

LDA中被測信號在兆赫茲(MHz)水平上,而Compuscope 82G數據採集卡在雙通道模式下採集速率為1GS/s,因此採集到的信號可以精確可靠地重建。由Compuscope軟體提供的快速傅里葉變換(FFT)是時域信號向頻域信號變換的理想工具。注意:所採集到的數據至少包含3個部分(如圖4所示):

1)由粒子經聚焦光束而產生的較低頻率—基頻。

2)與干涉圖樣相關的加在基頻上的多普勒信號(中心頻率fd)。

3)探測器和後續電路產生的寬頻雜訊。

4 結束語

應用LDA技術,結合Compuscope 82G數據採集卡,就能組成可靠准確的流體速度測量儀。LDA技術可以提供其它技術無法達到的測量精度,而結合先進的數據採集卡也不會帶來很大的成本支出。在不久的將來,這套系統有望成為成熟的、可供選擇的流體速度測量儀。

相關主題關鍵字: 激光多普勒測量技術

怎麼測水的流速,用什麼工具。怎麼計算水的流量。

測量水的流速,要用專門的流速儀(轉子流量器),流速乘以截面積就是水的流量。

轉子流量計是根據節流原理測量流體流量的,但是它是改變流體的流通面積來保持轉子上下的差壓恆定,故又稱為變流通面積恆差壓流量計,也稱為浮子流量計。轉子流量計是工業上和實驗室最常用的一種流量計。它具有結構簡單、直觀、壓力損失小、維修方便等特點。

轉子流量計適用於測量通過管道直 徑D<150mm的小流量,也可以測量腐蝕性介質的流量。使用時流量計一般安裝在垂直走向的管段上,流體介質自下而上地通過轉子流量計,經特殊設計的轉子流量計可以水平安裝或上進底出垂直安裝。

(4)流速測量儀器基本原理觀測方法擴展閱讀:

轉子流量計的工作原理:

轉子流量計由兩個部件組成,轉子流量計一件是從下向上逐漸擴大的錐形管;轉子流量計另一件是置於錐形管中且可以沿管的中心線上下自由移動的轉子。

轉子流量計當測量流體的流量時,被測流體從錐形管下端流入,流體的流動沖擊著轉子,並對它產生一個作用力(這個力的大小隨流量大小而變化),當流量足夠大時,所產生的作用力將轉子托起,並使之升高。

同時,被測流體流經轉子與錐形管壁間的環形斷面,這時作用在轉子上的力有三個:流體對轉子的動壓力、轉子在流體中的浮力和轉子自身的重力。 流量計垂直安裝時,轉子重心與錐管管軸會相重合,作用在轉子上的三個力都沿平行於管軸的方向。

當這三個力達到平衡時,轉子就平穩地浮在錐管內某一位置上。對於給定的轉子流量計,轉子大小和形狀己經確定,因此它在流體中的浮力和自身重力都是已知是常量,唯有流體對浮子的動壓力是隨來流流速的大小而變化的。

因此當來流流速變大或變小時,轉子將作向上或向下的移動,相應位置的流動截面積也發生變化,直到流速變成平衡時對應的速度,轉子就在新的位置上穩定。對於一台給定的轉子流量計,轉子在錐管中的位置與流體流經錐管的流量的大小成一一對應關系。

為了使轉子在在錐形管的中心線上下移動時不碰到管壁,通常採用兩種方法:

1、在轉子中心裝有一根導向芯棒,以保持轉子在錐形管的中心線作上下運動。

2、在轉子圓盤邊緣開有一道道斜槽,當流體自下而上流過轉子時,一面繞過轉子,同時又穿過斜槽產生一反推力,使轉子繞中心線不停地旋轉,就可保持轉子在工作時不致碰到管壁。轉子流量計的轉子材料可用不銹鋼、鋁、青銅等製成。

⑤ 流體測量的基本原理和方法。

流量測量方法
名詞與術語
 瞬時流量:單位時間內流過管道橫截面的流體量(m3/h、t/h)。
 累計流量:在一段時間內流過管道橫截面的流體總量(m3、t)。
 流量計:用於測量管道中流量的計量器具稱為流量計。
主要的質量指標
 流量范圍:最大與最小可測范圍,該范圍內誤差不超過容許值。
 量程和量程比:量程是最大流量與最小流量之差;量程比是最大流量與最小流量之比,又稱范圍度。
測量誤差
基本誤差:

准確度:流量計示值接近被測流量真值的能力,稱為流量計的准確度。
准確度等級有:0.1、0.2、0.5、1.0、1.5、2.5、4.0級。
 重復性:流量計在同一工作條件下,多次重復測量,其示值一致性的程度,反映儀表隨機性誤差的大小。
按測量對象劃分就有封閉管道和明渠兩大類;
按測量目的又可分為總量測量和流量測量,其儀表分別稱作總量表和流量計。
按測量原理分有力學原理、熱學原理、聲學原理、電學原理、光學原理、原子物理學原理等。

流量計簡介

流量測量方法和儀表的種類繁多。工業用的流量儀表種類達100多種。品種如此之多的原因就在於至今還沒找到一種對任何流體、任何量程、任何流動狀態以及任何使用條件都適用的流量儀表。

本文按照目前最流行、最廣泛的分類法,分別介紹各種流量計的原理、特點、應用概況及國內外的發展情況。

序號 流量計種類 全球產量
百分比
1 差壓式流量計(孔板、文丘里) 45~55%
2 浮子流量計(又稱玻璃轉子流量計) 13~16%
3 容積式流量計(橢圓、腰輪、螺旋) 12~14%
4 渦輪流量計 9~11%
5 電磁流量計 5~6%
6 流體振盪流量計(渦街、旋進) 2.2~3%
7 超聲流量計(時差式、多普勒) 1.6~2.2%
8 熱式流量計 2~2.5%
9 科里奧利質量流量計 0.9~1.2%
10 其他流量計(插入式流量計 1.6~2.2%

1.1差壓式流量計
差壓式流量計是根據安裝於管道中流量檢測件產生的差壓,已知的流體條件和檢測件與管道的幾何尺寸來計算流量的儀表。
差壓式流量計由一次裝置(檢測件)和二次裝置(差壓轉換和流量顯示儀表)組成。通常以檢測件形式對差壓式流量計分類,如孔板流量計、文丘里流量計、均速管流量計等。
二次裝置為各種機械、電子、機電一體式差壓計,差壓變送器及流量顯示儀表。它已發展為三化(系列化、通用化及標准化)程度很高的、種類規格龐雜的一大類儀表,它既可測量流量參數,也可測量其它參數(如壓力、物位、密度等)。
差壓式流量計的檢測件按其作用原理可分為:節流裝置、水力阻力式、離心式、動壓頭式、動壓頭增益式及射流式幾大類。
檢測件又可按其標准化程度分為二大類:標準的和非標準的。
所謂標准檢測件是只要按照標准文件設計、製造、安裝和使用,無須經實流標定即可確定其流量值和估算測量誤差。
非標准檢測件是成熟程度較差的,尚未列入國際標准中的檢測件。
差壓式流量計是一類應用最廣泛的流量計,在各類流量儀表中其使用量占居首位。近年來,由於各種新型流量計的問世,它的使用量百分數逐漸下降,但目前仍是最重要的一類流量計。
優點:
(1)應用最多的孔板式流量計結構牢固,性能穩定可靠,使用壽命長;
(2)應用范圍廣泛,至今尚無任何一類流量計可與之相比擬;
(3)檢測件與變送器、顯示儀表分別由不同廠家生產,便於規模經濟生產。
缺點:
(1)測量精度普遍偏低;
(2)范圍度窄,一般僅3:1~4:1;
(3)現場安裝條件要求高;
(4)壓損大(指孔板、噴嘴等)。
應用概況:
差壓式流量計應用范圍特別廣泛,在封閉管道的流量測量中各種對象都有應用,如流體方面:單相、混相、潔凈、臟污、粘性流等;工作狀態方面:常壓、高壓、真空、常溫、高溫、低溫等;管徑方面:從幾mm到幾m;流動條件方面:亞音速、音速、脈動流等。它在各工業部門的用量約占流量計全部用量的1/4~1/3。
1.2 浮子流量計
浮子流量計,又稱轉子流量計,是變面積式流量計的一種,在一根由下向上擴大的垂直錐管中,圓形橫截面的浮子的重力是由液體動力承受的,從而使浮子可以在錐管內自由地上升和下降。
浮子流量計是僅次於差壓式流量計應用范圍最寬廣的一類流量計,特別在小、微流量方面有舉足輕重的作用。
80年代中期,日本、西歐、美國的銷售金額占流量儀表的15%~20%。我國產量1990年估計在12~14萬台,其中95%以上為玻璃錐管浮子流量計。
特點:
(1)玻璃錐管浮子流量計結構簡單,使用方便,缺點是耐壓力低,有玻璃管易碎的較大風險;
(2)適用於小管徑和低流速;
(3)壓力損失較低。
1.3容積式流量計
原理
結構 容積式流量計按其測量元件分類,可分為橢圓齒輪流量計、刮板流量計、雙轉子流量計、旋轉活塞流量計、往復活塞流量計、圓盤流量計、液封轉筒式流量計、濕式氣量計及膜式氣量計等。

特點 (1)計量精度高;
(2)安裝管道條件對計量精度沒有影響;
(3)可用於高粘度液體的測量;
(4)范圍度寬;
(5)直讀式儀表無需外部能源可直接獲得累計,總量,清晰明了,操作簡便。
缺點:
(1)結果復雜,體積龐大;
(2)被測介質種類、口徑、介質工作狀態局限性較大;
(3)不適用於高、低溫場合;
(4)大部分儀表只適用於潔凈單相流體;
(5)產生雜訊及振動。

應用 容積式流量計與差壓式流量計、浮子流量計並列為三類使用量最大的流量計,常應用於昂貴介質(油品、天然氣等)的總量測量。
工業發達國家近年PD流量計(不包括家用煤氣表和家用水表)的銷售金額占流量儀表的13%~23%;我國約佔20%,1990年產量(不包括家用煤氣表)估計為34萬台,其中橢圓齒輪式和腰輪式分別約佔70%和20%。

優點:
應用概況:
1.4 渦輪流量計
渦輪流量計,是速度式流量計中的主要種類,它採用多葉片的轉子(渦輪)感受流體平均流速,從而且推導出流量或總量的儀表。
一般它由感測器和顯示儀兩部分組成,也可做成整體式。
渦輪流量計和容積式流量計、科里奧利質量流量計稱為流量計中三類重復性、精度最佳的產品,作為十大類型流量計之一,其產品已發展為多品種、多系列批量生產的規模。
優點:
(1)高精度,在所有流量計中,屬於最精確的流量計;
(2)重復性好;
(3)元零點漂移,抗干擾能力好;
(4)范圍度寬;
(5)結構緊湊。
缺點:
(1)不能長期保持校準特性;
(2)流體物性對流量特性有較大影響。
應用概況:
渦輪流量計在以下一些測量對象獲得廣泛應用:石油、有機液體、無機液、液化氣、天然氣和低溫流體統在歐洲和美國,渦輪流量計在用量上是僅次於孔板流量計的天然計量儀表,僅荷蘭在天然氣管線上就採用了2600多台各種尺寸,壓力從0.8~6.5MPa的氣體渦輪流量計,它們已成為優良的天然氣計量儀表。
1.5電磁流量計
電磁流量計是根據法拉弟電磁感應定律製成的一種測量導電性液體的儀表。
電磁流量計有一系列優良特性,可以解決其它流量計不易應用的問題,如臟污流、腐蝕流的測量。
70、80年代電磁流量在技術上有重大突破,使它成為應用廣泛的一類流量計,在流量儀表中其使用量百分數不斷上升。
優點:
(1)測量通道是段光滑直管,不會阻塞,適用於測量含固體顆粒的液固二相流體,如紙漿、泥漿、污水等;
(2)不產生流量檢測所造成的壓力損失,節能效果好;
(3)所測得體積流量實際上不受流體密度、粘度、溫度、壓力和電導率變化的明顯影響;
(4)流量范圍大,口徑范圍寬;
(5)可應用腐蝕性流體。
缺點:
(1)不能測量電導率很低的液體,如石油製品;
(2)不能測量氣體、蒸汽和含有較大氣泡的液體;
(3)不能用於較高溫度。
應用概況:
電磁流量計應用領域廣泛,大口徑儀表較多應用於給排水工程;中小口徑常用於高要求或難測場合,如鋼鐵工業高爐風口冷卻水控制,造紙工業測量紙漿液和黑液,化學工業的強腐蝕液,有色冶金工業的礦漿;小口徑、微小口徑常用於醫葯工業、食品工業、生物化學等有衛生要求的場所。
1.6 渦街流量計
渦街流量計是在流體中安放一根非流線型游渦發生體,流體在發生體兩側交替地分離釋放出兩串規則地交錯排列的游渦的儀表。
渦街流量計按頻率檢出方式可分為:應力式、應變式、電容式、熱敏式、振動體式、光電式及超聲式等。
渦街流量計是屬於最年輕的一類流量計,但其發展迅速,目前已成為通用的一類流量計。
優點:
(1)結構簡單牢固;
(2)適用流體種類多;
(3)精度較高;
(4)范圍度寬;
(5)壓損小。
缺點:
(1)不適用於低雷諾數測量;
(2)需較長直管段;
(3)儀表系數較低(與渦輪流量計相比);
(4)儀表在脈動流、多相流中尚缺乏應用經驗。
1.7 超聲流量計
超聲流量計是通過檢測流體流動對超聲束(或超聲脈沖)的作用以測量流量的儀表。
根據對信號檢測的原理超聲流量計可分為傳播速度差法(直接時差法、時差法、相位差法和頻差法)、波束偏移法、多普勒法、互相關法、空間濾法及雜訊法等。
超聲流量計和電磁流量計一樣,因儀表流通通道未設置任何阻礙件,均屬無阻礙流量計,是適於解決流量測量困難問題的一類流量計,特別在大口徑流量測量方面有較突出的優點,近年來它是發展迅速的一類流量計之一。
優點:
(1)可做非接觸式測量;
(2)為無流動阻撓測量,無壓力損失;
(3)可測量非導電性液體,對無阻撓測量的電磁流量計是一種補充。
缺點:
(1)傳播時間法只能用於清潔液體和氣體;而多普勒法只能用於測量含有一定量懸浮顆粒和氣泡的液體;
(2)多普勒法測量精度不高。
應用概況:
(1)傳播時間法應用於清潔、單相液體和氣體。典型應用有工廠排放液、:怪液、液化天然氣等;
(2)氣體應用方面在高壓天然氣領域已有使用良好的經驗;
(3)多普勒法適用於異相含量不太高的雙相流體,例如:未處理污水、工廠排放液、臟流程液;通常不適用於非常清潔的液體。
1.8 科里奧利質量流量計
科里奧利質量流量計(以下簡稱CMF)是利用流體在振動管中流動時,產生與質量流量成正比的科里奧利力原理製成的一種直接式質量流量儀表。
我國CMF的應用起步較晚,近年已有幾家製造廠(如太行儀表廠)自行開發供應市場;還有幾家製造廠組建合資企業或引用國外技術生產系列儀表。
1.9明渠流量計
與前述幾種不同,它是在非滿管狀敞開渠道測量自由表面自然流的流量儀表。
非滿管態流動的水路稱作明渠,測量明渠中水流流量的稱作明渠流量計(open channel flowmeter)。
明渠流量計除圓形外,還有U字形、梯形、矩形等多種形狀。
明渠流量計應用場所有城市供水引水渠;火電廠引水和排水渠、污水治理流入和排放渠;工礦企業水排放以及水利工程和農業灌溉用渠道。有人估計1995台,約占流量儀表整體的1.6%,但是國內應用尚無估計數據。
2 新工作原理流量儀表的研究和開發
2.1 靜電流量計(electrostatic flowmeter)
日本東京技術學院研製適用於石油輸送管線低導電液體流量測量的靜電流量計。
靜電流量計的金屬測量管絕緣地與管系連接,測量電容器上靜電荷便可知道測量管內的電荷。他們分別作了內徑4~8mm銅、不銹鋼等金屬和塑料測量管儀表的實流試驗,試驗表明流量與電荷之間接近於線性。
2.2 復合效應流量儀表(combined effects meter)
該儀表的工作原理是基於流體的動量和壓力作用於儀表腔體產生的變形,測量復合效應的變形求取流量。本儀表由美國GMI工程和管理學院開發,已申請兩項專利。
2.3 轉速表式流量感測器(tachmetric flowrate sensor)
它是由俄羅斯科學工程中心工業儀表公司開發,是基於懸浮效應理論研製的。該儀表已在若干現場成功的應用(例如在核電站安裝2000餘台測量熱水流量,連續使用8年),且還在改進以擴大應用領域。
3 幾種流量儀表應用和發展動向
3.1 科里奧利質量流量計(CMF)
國外CMF已發展30餘系列,各系列開發在技術上著眼點在於:流量檢測測量管結構上設計創新;提高儀表零點穩定性和精確度等性能;增加測量管撓度,提高靈敏度;改善測量管應力分布,降低疲勞損壞,加強抗振動干擾能力等。
3.2 電磁流量計(EMF)
EMF從50年代初進入工業應用以來,使用領域日益擴展,80年代後期起在各國流量儀表銷售金額中已佔16%~20%。
我國近年發展迅速,1994年銷售估計為6500~7500台。國內已生產最大口徑為2~6m的ENF,並有實流校驗口徑3m的設備能力。
3.3 渦街流量計(USF)
USF在60年代後期進入工業應用,80年代後期起在各國流量儀表銷售金額中已佔4%~6%。1992年世界范圍估計銷售量為3.54.8萬台,同期國內產品估計在8000~9000台。
4 結論
由上述可知,流量計發展到今天雖然已日趨成熟,但其種類仍然極其繁多,至今尚無一種對於任何場合都適用的流量計。
每種流量計都有其適用范圍,也都有局限性。這就要求我們:
(1)在選擇儀表時,一定要熟悉儀表和被測對象兩方面的情況,並要兼顧考慮其它因素,這樣測量才會准確;
(2)努力研製新型儀表,使其在現有的基礎上更加完善。

流量相關的物性參數
在流量測量和計算中,要使用到一些流體的物理性質(流體物性),它們對流量測量的准確度及流量計的選用都有很大影響。我們對這些物性參數只作基本概念及一些簡單計算式的介紹,詳細數據資料需到有關手冊去查詢。
1.流體的密度
流體的密度由下式定義

ρ—流體密度,kg/m3;
m—流體的質量,kg;
V—流體的體積,m3。
(1) 液體的密度
壓力不變時,液體密度計算式為:

ρ—溫度t時液體的密度,kg/m3;
ρ20—20℃時液體的密度,kg/m3;
μ—液體的體積膨脹系數,1/℃;
t—液體的溫度,℃。
溫度不變時,液體密度計算式為:

ρ1—壓力P1時液體的密度,kg/m3;
ρ0—壓力P0時液體的密度,;kg/m3;
β—液體的體積壓縮系數1/Mpa;
P0、P1——液體的壓力,Mpa。
通常壓力的變化對液體密度的影響很小,在5Mpa以下可以忽略不計,但是對於碳氫化合物,即使在較低壓力下,亦應進行壓力修正。
(2) 氣體的密度
工作狀態下干氣體的密度計算式為:

ρ—工作狀態下干氣體的密度,kg/m3;
ρn—標准狀態下(293.15k,101.325kPa)干氣體的密度,kg/m3;
p—工作狀態下氣體的絕對壓力,kPa;
pn—標准狀態下絕對壓力,101.325kPa;
T—工作狀態下氣體的絕對溫度,K;
Tn—標准狀態下絕對溫度,293.15K;
Zn—標准狀態下氣體的壓縮系數;
Z—工作狀態下氣體的壓縮系數。
2.流體的粘度
流體本身阻滯其質點相對滑動的性質稱為流體的粘性。流體粘性的大小用粘度來度量。同一流體的粘度隨流體的溫度和壓力而變化。通常溫度上升,液體的粘度下降,而氣體粘度上升。液體粘度只在很高壓力下才需進行壓力修正,而氣體的粘度與壓力、溫度的關系十分密切。表徵流體粘度常用有如下二種:
(1)動力粘度

η——流體動力粘度,Pa•s;
τ—單位面積上的內摩擦力,Pa;
—速度梯度,1/s;
u —流體流速,m/s;
h —兩流體層間距離,m。
(3)運動粘度 流體的動力粘度與其密度的比值稱為運動粘度。

v——運動粘度m2/s 。
3.熱膨脹率
熱膨脹率是指流體溫度變化1ºC時其體積的相對變化率,即:

β—流體的熱膨脹率,1/℃;
V —流體原有體積,m3;
∆V—流體因溫度變化膨脹的體積,m3;
∆T—流體溫度變化值,℃。
4.壓縮系數
壓縮系數是指當流體溫度不變,所受壓力變化時,其體積的變化率,即:

k—流體的壓縮系數,1/Pa;
∆V—壓力為p時的流體體積m3;
∆p—壓力增加∆p時流體體積的變化量,m3。
5.雷諾數
雷諾數是一個表徵流體慣性力與粘性力之比的無量綱量,其定義為:

V—流體的平均速度,m/s;
L—流速的特徵長度,如在圓管中取管內徑值,m;
ν—流體的運動粘度,m2/s。
雷諾數的大小可以判斷流動的狀態,一般管道雷諾數Re<2300為層流狀態,Re=2000~4000為過渡狀態,Re>4000為湍流(紊流)狀態。

希望能用上。

⑥ 水的流速如何檢測

水的流速的檢測方法如下:

1、薄壁堰法

測量精度較高,比較常用的有薄壁三角堰法、薄壁矩形堰法和薄壁梯形堰法。a、薄壁三角堰法適用條件:它適用於水頭0.05 m ≤H ≤0.35 m、流量Q≤0.1 m3/ s 的水流量測。b、薄壁矩形堰法適用條件:測量過堰水深H時,應在堰口上游大於3H處進行。

2、巴氏槽法

具有水頭損失小、不宜沉積雜物、量水精度高等特點。缺點是造價高、對施工質量要求也較高。適用條件:槽各部位尺寸符合標准槽要求,在設計安裝時不能隨意改變給定的標准尺寸;在進口的下游應有不小於0.2m的跌水。

3、容積法

在一段時間內,使渠道內的污水引入體積經過率定的容器中,用時間終了與起始時刻相對應的水量凈體積差△V除以時段差△t,結果即流量Q,重復測量數次,取平均值。適用條件:流量較小,排水渠道不規范。

4、流量計法

選用有針對性的專業流量計進行測量。根據流量計的結構原理,可分為以下幾種類型:容積式流量計、葉輪式流量計、差壓式流量計、電磁流量計、超聲波流量計等。

5、流速儀法

用流速儀測定水流速度,並由流速與斷面面積的乘積來計算流量的方法。流速儀法的測量成果可作為率定或校核其他測流方法的標准。適用條件:在水深大於10cm、流速不小於0.05m/s時,可用流速計測量流速。

6、浮標法

一種簡便的測流方法,根據觀測浮標漂移速度,測量水道橫斷面,以此來推估斷面流量。適用條件:渠道長度不小於10米、無彎曲、底壁平滑。

⑦ 超聲測速儀基本原理

根據聲學多普勒效應,當向移動物體發射頻率為F的連續超聲波時,被移動物體反射的超聲波頻率為f,f與F服從多普勒關系。如果超聲發射方向和移動物體的夾角已知,就可以通過多普勒關系的v,f,F,c表達式得出物體移動速度v。

超聲波測速適合作流動物質中含有較多雜質的流體的流速測量,超聲多譜勒法只是其中一種 ,還有頻差法和時差法等等。



(7)流速測量儀器基本原理觀測方法擴展閱讀:

測量方法

1、對於移動物體的速度測量多採用超聲多普勒法。

2、時差法測量沿流體流動的正反兩個不同方向發射的超聲播到達接收端的時差。需要突出解決的難題是這種情況下,由於聲速參加運算,而聲速受溫度的影響變化較大,所以不適合用在工業環境下等溫度變化范圍大的地方。

3、頻差法是時差法的改進,可以把分母上的聲速轉換到分子上,然後在求差過程中約掉,這就可以避開聲速隨溫度變化的影響,但測頻由於存在正負1誤差,對於精度高的地方,需要高速計數器。

4、還有就是回鳴法了,可以有效改進由於計數器正負1誤差帶來的測量誤差。



⑧ 河流的水位、流速和流量是如何測定的

陸地上的大小河流,水情都不穩定。有些常年不息地流淌,有些枯水季節斷流,有些洪水季節常常泛濫成災。為了合理的利用河水資源,就必須掌握河流的變化規律。河流水情的變化主要表現為水位的升降、流速的快慢、流量的增減、泥沙的多少以及河水的水溫和冰情變化等。水位,指一定地點,一定時間河水表面的高度。它是以某一點作為水位基面(即水位零點)進行量算的。水位基面一般分絕對基面和測點基面兩種:絕對基面是以某海口的平均海平面為標准進行計算的,我國目前河流水位都是以黃海的青島零點為標准;測點基面是為了便於在河流上就地觀測和計算,通常在觀測地點最低枯水位以下半米到一米處作為零點的。

但是在應用這種觀測資料時,須根據測點基面和絕對基面的關系,將其換算成統一的絕對高程。水位的漲落一般是在觀測點用水尺或自記水位計進行觀測的。水位觀測是水文中最重要的項目之一,其它一系列水文要素的計算均受水位資料的影響。根據不同時間水位的記錄,可以繪出一條某河流的水位歷時曲線,從曲線上可以清楚的看出該點全年水位變化情況:流速,指單位時間里水流前進的距離。流速在河流橫斷面上是不均勻的,底層水流由於受河床摩擦力作用,流速較小。流速由水底向水面遞增,但水面受空氣的摩擦,流速減小,而最大流速在水面稍下一點的位置。從橫向分布來說,兩岸流速最小,河心流速最大。縱向流速多運用流速儀(旋杯式或旋漿式)進行觀測。

⑨ 「超聲測速儀」的基本原理是什麼

測速原理是測速儀前後兩次發出並接受到被測車反射回的超聲波信號,再根據兩次信號的時間差,測出車速。

超聲波測速適合作流動物質中含有較多雜質的流體的流速測量,超聲多譜勒法只是其中一種,還有頻差法和時差法等等。

關於流體的流速的超聲測量方法有多種多樣:

  1. 對於移動物體的速度測量多採用超聲多譜勒法。

  2. 時差法測量沿流體流動的正反兩個不同方向發射的超聲播到達接收端的時差。需要突出解決的難題是這種情況下,由於聲速參加運算,而聲速受溫度的影響變化較大,所以不適合用在工業環境下等溫度變化范圍大的地方。

  3. 頻差法是時差法的改進,可以把分母上的聲速轉換到分子上,然後在求差過程中約掉,這就可以避開聲速隨溫度變化的影響,但測頻由於存在正負1誤差,對於精度高的地方,需要高速計數器。

  4. 還有就是回鳴法了,可以有效改進由於計數器正負1誤差帶來的測量誤差。

⑩ 流速測量都有哪些方法

流速測量方法
1、浮標法
浮標法是河流測速中很常用,簡單易行的一種方法。在河流測速中,在上游的某一位置放置漂浮物,同時用秒錶記下當時的時間,當漂浮物到達下游某一位置時記錄時間,同時測出這兩個位置的距離,就可以算出河水的流速,重復幾次就可以求出河水的平均流速。但是這種方法只能測出流體的表面流速。在坡面流測速中,我們也可以用此種方法,漂浮物可以選用較為小的諸如泡沫顆粒一類的東西。兩點間的距離應該是徑流流過的距離。重復幾次,即可確定水流速度的平均值。此種方法簡單易行,不足之處就是誤差較大。用公式表示為:
2、顏色示蹤法
顏色示蹤法也是河流測流速的一種方法。通過給流體注入染色劑,如紅墨水,在初始位置倒入染色劑並記錄時間,選定某一位置作為中止位置,當染色後的流體到達時記錄時間,就可以求出水流流速。多做幾個重復,就可以求出此段距離內的平均流速。這種方法同樣簡便易行,誤差較浮標法小,但要注意距離不能選得太長,否則染色劑會稀釋嚴重,肉眼不易觀察。計算公式和浮標法相同
3、鹽液示蹤法
鹽液示蹤法是在上游某一位置給徑流中注入鹽液,同時用秒錶記錄時間,通過布設在下游的電極來感應鹽液的到達,由連接在電極上的靈敏電流計顯示出來。通過時間差和距離,就可以算出此段距離內的流體速度。
計算公式和上式相同,只不過時間 為從開始注入染色劑到電流計的指針發生明顯偏移的時間。
4、流量法
在明渠水流測量過程中,對於非常規則的渠道,流量法是目前測量流速比較准確的方法之一,其原理明確、簡單。對於坡面薄層水流,由於水流深度在厘米級,其誤差主要是產生於水層厚度的測量。在不同坡度和泥沙含量條件下,測量水流流量與水深,流量用積分桶測量,水深用水位計測量,水位計的精度為1/10mm。可以用公式表示為:
5、電解質脈沖法
這是一種較新的測速方法。在示蹤法的基礎上,假設加入的鹽液為電解質脈沖,建立鹽液在水流中遷移的數學模型,並求得解析解,再根據測量結果擬合出水流速度,這種方法即為電解質脈沖法。該方法從理論和初步測量結果來看是可行的,但其可行性還需要用大量的實驗進行驗證,分析泥沙含量、流速和流量對測量結果的影響。由於在野外或室內不規范的條件下,至今沒有一種好的方法對薄層水流流速進行比較准確的測量,因此只有在室內設置規范的模擬水槽,建立鹽液在水流中遷移的數學模型,並求得解析解,經模數轉換後用最小二乘法對電解質遷移的數學模型進行擬合,計算出水流速度。同時,用質心運動速度和流量法的測量結果對這種方法進行驗證。

閱讀全文

與流速測量儀器基本原理觀測方法相關的資料

熱點內容
家裡木瓜種植方法 瀏覽:976
紫砂壺的養護方法有哪些 瀏覽:388
兒童怎麼減肥最快一個方法 瀏覽:300
祛痘印什麼方法最好 瀏覽:886
三星手機真偽查詢的方法 瀏覽:15
空調耗冷量計算方法 瀏覽:780
案例分析法的具體方法 瀏覽:739
石榴小苗嫁接方法視頻 瀏覽:36
治療脫發的有效方法 瀏覽:969
口紅斷了用什麼方法可以粘上 瀏覽:613
上海進口岩板安裝方法 瀏覽:307
出去跑業務的技巧和方法 瀏覽:23
豬用促排使用方法 瀏覽:809
移動手機信號不穩定的解決方法 瀏覽:387
8英寸面餅食用方法 瀏覽:66
配線子系統有哪些方法 瀏覽:589
檢測voc方法 瀏覽:458
消防器材的種類和使用方法 瀏覽:144
安卓神行者使用方法 瀏覽:265
有什麼好方法治療不孕 瀏覽:605