Ⅰ 科學家是怎麼測量星系之間的距離的
不同的天體距離要有不同的方法,摘抄如下:
天體測量方法
2.2.2光譜在天文研究中的應用
人類一直想了解天體的物理、化學性狀。這種願望只有在光譜分析應用於天文後才成為可能並由此而導致了天體物理學的誕生和發展。通過光譜分析可以:(1)確定天體的化學組成;(2)確定恆星的溫度;(3)確定恆星的壓力;(4)測定恆星的磁場;(5)確定天體的視向速度和自轉等等。
2.3天體距離的測定
人們總希望知道天體離我們有多遠,天體距離的測量也一直是天文學家們的任務。不同遠近的天體可以采不同的測量方法。隨著科學技術的發展,測定天體距離的手段也越來越先進。由於天空的廣袤無垠,所使用測量距離單位也特別。天文距離單位通常有天文單位(AU)、光年(ly)和秒差距(pc)三種。
2.3.1月球與地球的距離
月球是距離我們最近的天體,天文學家們想了很多的辦法測量它的遠近,但都沒有得到滿意的結果。科學的測量直到18世紀(1715年至1753年)才由法國天文學家拉卡伊(N.L.Lacaille)和他的學生拉朗德(Larand)用三角視差法得以實現。他們的結果是月球與地球之間的平均距離大約為地球半徑的60倍,這與現代測定的數值(384401千米)很接近。
雷達技術誕生後,人們又用雷達測定月球距離。激光技術問世後,人們利用激光的方向性好,光束集中,單色性強等特點來測量月球的距離。測量精度可以達到厘米量級。
2.3.2太陽和行星的距離
地球繞太陽公轉的軌道是橢圓,地球到太陽的距離是隨時間不斷變化的。通常所說的日地距離,是指地球軌道的半長軸,即為日地平均距離。天文學中把這個距離叫做一個「天文單位」(1AU)。1976年國際天文學聯合會把一個天文單位的數值定為1.49597870×1011米,近似1.496億千米。
太陽是一個熾熱的氣體球,測定太陽的距離不能像測定月球距離那樣直接用三角視差法。早期測定太陽的距離是藉助於離地球較近的火星或小行星。先用三角視差法測定火星或小行星的距離,再根據開普勒第三定律求太陽距離。1673年法國天文學家卡西尼(Dominique Cassini)首次利用火星大沖的機會測出了太陽的距離。
許多行星的距離也是由開普勒第三定律求得的,若以1AU為日地距離,「恆星年」為單位作為地球公轉周期,便有:T2=a3。若一個行星的公轉周期被測出,就可以算出行星到太陽的距離。如水星的公轉周期為0.241恆星年,則水星到太陽的距離為0.387天文單位(AU)。
2.2.3恆星的距離
由於恆星距離我們非常遙遠,它們的距離測定非常困難。對不同遠近的恆星,要用不同的方法測定。目前,已有很多種測定恆星距離的方法:
(1)三角視差法
河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:
sinπ=a/D
若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π
用周年視差法測定恆星距離,有一定的局限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。
天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關系是:
1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。
(2)分光視差法
對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於周年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。
m - M= -5 + 5logD.
(3)造父周光關系測距法
大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動周期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的「變星」。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化周期是5天8小時46分38秒鍾,稱為「光變周期」。在恆星世界裡,凡跟造父一有相同變化的變星,統稱「造父變星」。
Ⅱ 星球之間的距離是怎樣測量的
不同的天體距離要有不同的方法,摘抄如下:
天體測量方法
2.2.2光譜在天文研究中的應用
人類一直想了解天體的物理、化學性狀。這種願望只有在光譜分析應用於天文後才成為可能並由此而導致了天體物理學的誕生和發展。通過光譜分析可以:(1)確定天體的化學組成;(2)確定恆星的溫度;(3)確定恆星的壓力;(4)測定恆星的磁場;(5)確定天體的視向速度和自轉等等。
2.3天體距離的測定
人們總希望知道天體離我們有多遠,天體距離的測量也一直是天文學家們的任務。不同遠近的天體可以采不同的測量方法。隨著科學技術的發展,測定天體距離的手段也越來越先進。由於天空的廣袤無垠,所使用測量距離單位也特別。天文距離單位通常有天文單位(AU)、光年(ly)和秒差距(pc)三種。
2.3.1月球與地球的距離
月球是距離我們最近的天體,天文學家們想了很多的辦法測量它的遠近,但都沒有得到滿意的結果。科學的測量直到18世紀(1715年至1753年)才由法國天文學家拉卡伊(N.L.Lacaille)和他的學生拉朗德(Larand)用三角視差法得以實現。他們的結果是月球與地球之間的平均距離大約為地球半徑的60倍,這與現代測定的數值(384401千米)很接近。
雷達技術誕生後,人們又用雷達測定月球距離。激光技術問世後,人們利用激光的方向性好,光束集中,單色性強等特點來測量月球的距離。測量精度可以達到厘米量級。
2.3.2太陽和行星的距離
地球繞太陽公轉的軌道是橢圓,地球到太陽的距離是隨時間不斷變化的。通常所說的日地距離,是指地球軌道的半長軸,即為日地平均距離。天文學中把這個距離叫做一個「天文單位」(1AU)。1976年國際天文學聯合會把一個天文單位的數值定為1.49597870×1011米,近似1.496億千米。
太陽是一個熾熱的氣體球,測定太陽的距離不能像測定月球距離那樣直接用三角視差法。早期測定太陽的距離是藉助於離地球較近的火星或小行星。先用三角視差法測定火星或小行星的距離,再根據開普勒第三定律求太陽距離。1673年法國天文學家卡西尼(Dominique Cassini)首次利用火星大沖的機會測出了太陽的距離。
許多行星的距離也是由開普勒第三定律求得的,若以1AU為日地距離,「恆星年」為單位作為地球公轉周期,便有:T2=a3。若一個行星的公轉周期被測出,就可以算出行星到太陽的距離。如水星的公轉周期為0.241恆星年,則水星到太陽的距離為0.387天文單位(AU)。
2.2.3恆星的距離
由於恆星距離我們非常遙遠,它們的距離測定非常困難。對不同遠近的恆星,要用不同的方法測定。目前,已有很多種測定恆星距離的方法:
(1)三角視差法
河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:
sinπ=a/D
若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π
用周年視差法測定恆星距離,有一定的局限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。
天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關系是:
1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。
(2)分光視差法
對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於周年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。
m - M= -5 + 5logD.
(3)造父周光關系測距法
大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動周期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的「變星」。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化周期是5天8小時46分38秒鍾,稱為「光變周期」。在恆星世界裡,凡跟造父一有相同變化的變星,統稱「造父變星」。
作者: haj520520 2005-5-21 18:44 回復此發言
------------------------------------------------------------------------
2 天體測量方法
1912 年美國一位女天文學家勒維特(Leavitt 1868--1921)研究小麥哲倫星系內的造父變星的星等與光變周期時發現:光變周期越長的恆星,其亮度就越大。這就是對後來測定恆星距離很有用的「周光關系」。目前在銀河系內共發現了700多顆造父變星。許多河外星系的距離都是靠這個量天尺測量的。
(4)譜線紅移測距法
20 世紀初,光譜研究發現幾乎所有星系的都有紅移現象。所謂紅移是指觀測到的譜線的波長(l)比相應的實驗室測知的譜線的波長(l0)要長,而在光譜中紅光的波長較長,因而把譜線向波長較長的方向的移動叫做光譜的紅移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望遠鏡觀測到更多的河外星系,又發現星系距我們越遠,其譜線紅移量越大。
譜線紅移的流行解釋是大爆炸宇宙學說。哈勃指出天體紅移與距離有關:Z = H*d /c,這就是著名的哈勃定律,式中Z為紅移量;c為光速;d為距離;H為哈勃常數,其值為50~80千米/(秒·兆秒差距)。根據這個定律,只要測出河外星系譜線的紅移量Z,便可算出星系的距離D。用譜線紅移法可以測定遠達百億光年計的距離。
Ⅲ 如何測量行星距離
最早是把太陽與地球的距離a的測定,同太陽與一個小行星的距離a1的測定聯系起來,具體步驟是:
1,測量a與a1的差,即a1-a
2,測量a與a1的比,即a/a1
3,用解二元一次方程組的方法求出a
測量a與a1的差的方法:當太陽與小行星在地球相反的兩側時,小行星與地球(嚴格說是地心)的距離就是a與a1的差,這時,可以用觀測這個小行星的地平視差的方法測定這個距離.(月球與地球的距離最早就是用觀測地平視差的方法測量的).
測量a與a1的比的方法:根據開普勒定律,任意兩個天體與太陽距離之比的立方等於公轉周期之比的平方.只要測量出地球與這個小行星各自的公轉周期,就能算出a與a1之比.
知道了這個差值和比值,日地距離就很好計算了. 同理可測其他行星到太陽的距離。要求行星間的距離,只要把兩個行星與太陽的距離想減就行。 望採納~!謝謝~!
Ⅳ 都說行星距我們有好幾光年,這個是怎麼測的啊
三角視差法
測量天體之間的距離可不是一件容易的事。 天文學家把需要測量的天體按遠近不同分成好幾個等級。離我們比較近的天體,它們離我們最遠不超過100光年(1光年=9.461012千米),天文學家用三角視差法測量它們的距離。三角視差法是把被測的那個天體置於一個特大三角形的頂點,地球繞太陽公轉的軌道直徑的兩端是這個三角形的另外二個頂點,通過測量地球到那個天體的視角,再用到已知的地球繞太陽公轉軌道的直徑,依靠三角公式就能推算出那個天體到我們的距離了。稍遠一點的天體我們無法用三角視差法測量它和地球之間的距離,因為在地球上再也不能精確地測定他它們的視差了。
移動星團法
這時我們要用運動學的方法來測量距離,運動學的方法在天文學中也叫移動星團法,根據它們的運動速度來確定距離。不過在用運動學方法時還必須假定移動星團中所有的恆星是以相等和平行的速度在銀河系中移動的。在銀河系之外的天體,運動學的方法也不能測定它們與地球之間的距離。
造父視差法(標准燭光法)
物理學中有一個關於光度、亮度和距離關系的公式。S∝L0/r2
測量出天體的光度L0和亮度S,然後利用這個公式就知道天體的距離r。光度和亮度的含義是不一樣的,亮度是指我們所看到的發光體有多亮,這是我們在地球上可直接測量的。光度是指發光物體本身的發光本領,關鍵是設法知道它就能得到距離。天文學家勒維特發現「造父變星」,它們的光變周期與光度之間存在著確定的關系。於是可以通過測量它的光變周期來定出廣度,再求出距離。如果銀河系外的星系中有顆造父變星,那麼我們就可以知道這個星系與我們之間的距離了。那些連其中有沒有造父變星都無法觀測到的更遙遠星系,當然要另外想辦法。
三角視差法和造父視差法是最常用的兩種測距方法,前一支的尺度是幾百光年,後一支是幾百萬光年。在中間地帶則使用統計方法和間接方法。最大的量天尺是哈勃定律方法,尺度達100億光年數量級。
哈勃定律方法
1929年哈勃(Edwin Hubble)對河外星系的視向速度與距離的關系進行了研究。當時只有46個河外星系的視向速度可以利用,而其中僅有24個有推算出的距離,哈勃得出了視向速度與距離之間大致的線性正比關系。現代精確觀測已證實這種線性正比關系
V = H0×d
其中v為退行速度,d為星系距離,H0=100h0km.s-1Mpc(h0的值為0<h0<1)為比例常數,稱為哈勃常數。這就是著名的哈勃定律。
利用哈勃定律,可以先測得紅移Δν/ν通過多普勒效應Δν/ν=V/C求出V,再求出d。
哈勃定律揭示宇宙是在不斷膨脹的。這種膨脹是一種全空間的均勻膨脹。因此,在任何一點的觀測者都會看到完全一樣的膨脹,從任何一個星系來看,一切星系都以它為中心向四面散開,越遠的星系間彼此散開的速度越大。
Ⅳ 請問行星距離的測量啊
一般是用三角法,比如說地球在春分點和秋分點時分別觀測一顆恆星對地球的角度,然後以公轉軌道半徑為基線,算出它距地球的距離
對於較近的天體(500光年以內)採用三角法測距。
500--10萬光年的天體採用光度法確定距離。
10萬光年以外天文學家找到了造父變星作為標准,可達5億光年的范圍。
更遠的距離是用觀測到的紅移量,依據哈勃定理推算出來的。
參考資料:吳國盛 《科學的歷程》
同的天體距離要有不同的方法,摘抄如下:
天體測量方法
2.2.2光譜在天文研究中的應用
人類一直想了解天體的物理、化學性狀。這種願望只有在光譜分析應用於天文後才成為可能並由此而導致了天體物理學的誕生和發展。通過光譜分析可以:(1)確定天體的化學組成;(2)確定恆星的溫度;(3)確定恆星的壓力;(4)測定恆星的磁場;(5)確定天體的視向速度和自轉等等。
2.3天體距離的測定
人們總希望知道天體離我們有多遠,天體距離的測量也一直是天文學家們的任務。不同遠近的天體可以采不同的測量方法。隨著科學技術的發展,測定天體距離的手段也越來越先進。由於天空的廣袤無垠,所使用測量距離單位也特別。天文距離單位通常有天文單位(AU)、光年(ly)和秒差距(pc)三種。
2.3.1月球與地球的距離
月球是距離我們最近的天體,天文學家們想了很多的辦法測量它的遠近,但都沒有得到滿意的結果。科學的測量直到18世紀(1715年至1753年)才由法國天文學家拉卡伊(N.L.Lacaille)和他的學生拉朗德(Larand)用三角視差法得以實現。他們的結果是月球與地球之間的平均距離大約為地球半徑的60倍,這與現代測定的數值(384401千米)很接近。
雷達技術誕生後,人們又用雷達測定月球距離。激光技術問世後,人們利用激光的方向性好,光束集中,單色性強等特點來測量月球的距離。測量精度可以達到厘米量級。
2.3.2太陽和行星的距離
地球繞太陽公轉的軌道是橢圓,地球到太陽的距離是隨時間不斷變化的。通常所說的日地距離,是指地球軌道的半長軸,即為日地平均距離。天文學中把這個距離叫做一個「天文單位」(1AU)。1976年國際天文學聯合會把一個天文單位的數值定為1.49597870×1011米,近似1.496億千米。
太陽是一個熾熱的氣體球,測定太陽的距離不能像測定月球距離那樣直接用三角視差法。早期測定太陽的距離是藉助於離地球較近的火星或小行星。先用三角視差法測定火星或小行星的距離,再根據開普勒第三定律求太陽距離。1673年法國天文學家卡西尼(Dominique Cassini)首次利用火星大沖的機會測出了太陽的距離。
許多行星的距離也是由開普勒第三定律求得的,若以1AU為日地距離,「恆星年」為單位作為地球公轉周期,便有:T2=a3。若一個行星的公轉周期被測出,就可以算出行星到太陽的距離。如水星的公轉周期為0.241恆星年,則水星到太陽的距離為0.387天文單位(AU)。
2.2.3恆星的距離
由於恆星距離我們非常遙遠,它們的距離測定非常困難。對不同遠近的恆星,要用不同的方法測定。目前,已有很多種測定恆星距離的方法:
(1)三角視差法
河內天體的距離又稱為視差,恆星對日地平均距離(a)的張角叫做恆星的三角視差(p),則較近的恆星的距離D可表示為:
sinπ=a/D
若π很小,π以角秒錶示,且單位取秒差距(pc),則有:D=1/π
用周年視差法測定恆星距離,有一定的局限性,因為恆星離我們愈遠,π就愈小,實際觀測中很難測定。三角視差是一切天體距離測量的基礎,至今用這種方法測量了約10,000多顆恆星。
天文學上的距離單位除天文單位(AU)、秒差距(pc)外,還有光年(ly),即光在真空中一年所走過的距離,相當94605億千米。三種距離單位的關系是:
1秒差距(pc)=206265天文單位(AU)=3.26光年=3.09×1013千米
1光年(1y)=0.307秒差距(pc)=63240天文單位(Au)=0.95×1013千米。
(2)分光視差法
對於距離更遙遠的恆星,比如距離超過110pc的恆星,由於周年視差非常小,無法用三角視差法測出。於是,又發展了另外一種比較方便的方法--分光視差法。該方法的核心是根據恆星的譜線強度去確定恆星的光度,知道了光度(絕對星等M),由觀測得到的視星等(m)就可以得到距離。
m - M= -5 + 5logD.
(3)造父周光關系測距法
大質量的恆星,當演化到晚期時,會呈現出不穩定的脈動現象,形成脈動變星。在這些脈動變星中,有一類脈動周期非常規則,中文名叫造父。造父是中國古代的星官名稱。仙王座δ星中有一顆名為造父一,它是一顆亮度會發生變化的「變星」。變星的光變原因很多。造父一屬於脈動變星一類。當它的星體膨脹時就顯得亮些,體積縮小時就顯得暗些。造父一的這種亮度變化很有規律,它的變化周期是5天8小時46分38秒鍾,稱為「光變周期」。在恆星世界裡,凡跟造父一有相同變化的變星,統稱「造父變星」。
作者: haj520520 2005-5-21 18:44 回復此發言
------------------------------------------------------------------------
2 天體測量方法
1912 年美國一位女天文學家勒維特(Leavitt 1868--1921)研究小麥哲倫星系內的造父變星的星等與光變周期時發現:光變周期越長的恆星,其亮度就越大。這就是對後來測定恆星距離很有用的「周光關系」。目前在銀河系內共發現了700多顆造父變星。許多河外星系的距離都是靠這個量天尺測量的。
(4)譜線紅移測距法
20 世紀初,光譜研究發現幾乎所有星系的都有紅移現象。所謂紅移是指觀測到的譜線的波長(l)比相應的實驗室測知的譜線的波長(l0)要長,而在光譜中紅光的波長較長,因而把譜線向波長較長的方向的移動叫做光譜的紅移,z=(l-l0)/ l0。1929年哈勃用2.5米大型望遠鏡觀測到更多的河外星系,又發現星系距我們越遠,其譜線紅移量越大。
譜線紅移的流行解釋是大爆炸宇宙學說。哈勃指出天體紅移與距離有關:Z = H*d /c,這就是著名的哈勃定律,式中Z為紅移量;c為光速;d為距離;H為哈勃常數,其值為50~80千米/(秒·兆秒差距)。根據這個定律,只要測出河外星系譜線的紅移量Z,便可算出星系的距離D。用譜線紅移法可以測定遠達百億光年計的距離
Ⅵ 怎麼測行星之間的距離
1、測量較近處的恆星:
我們可以把地球繞太陽運動軌道的直徑作為已知距離的基線。地球繞太陽一周的時間是一年,半年繞行半周。在相隔半年的那兩天里,地球正好處在地球軌道直徑的兩端。在相隔半年的那兩天分別觀測同一顆恆星,其方向是不同的,這就是它的視差角。由視差角和地球的軌道直徑(3億千米),便可以計算出恆星的距離了。利用這種方法只能測量二三百光年以內的恆星的距離。
2、測量更遠處的恆星:
因為更遠處的恆星的視差角太小了,無法測准,只能尋找其他方法。其中一個著名的方法是利用造父變星的周光關系來推算遙遠天體的距離,造父變星因此而獲得了「量天尺」的美稱。
3、現在,我們可以用雷達從地球向月球和金星上發射電波,通過計算電波返回地面的時間,就可以將這個距離非常精確地測量出來了。
Ⅶ 怎麼測量星球和星球之間的距離
具體如下:
Ⅷ 太陽視差的測定方法
測定太陽視差 的方法主要是觀測太陽系的行星。當行星(或小行星)最接近地球的時候﹐先測定行星的周日赤道地平視差﹐從而確定行星對地球的距離﹐然後再根據天體力學的理論所求得的行星對地球的距離與日地平均距離之比﹐推求出太陽視差值。為此﹐天文學家曾在金星凌日﹑火星沖﹑小行星沖等(見行星視運動)天象發生時的有利時刻進行有計畫的觀測﹐其中特別著名的工作是1930~1931年在愛神星沖時的全球性聯合觀測﹐全世界有23個天文台(包括中國上海天文台的佘山觀測站)參加觀測。根據這次觀測﹐瓊斯得到I(^0=8790。現代最精確的觀測採用雷達天文方法﹐先測定一個天文單位距離的光行時A﹐在光速c 已知的情況下﹐求得A ﹐再從A 導出 。在紐康的天文常數系統中太陽視差取880﹐此數值從1896年起沿用到1967年。在1964年國際天文學聯合會天文常數系統中﹐太陽視差作為導出常數﹐ =arcsin(a e/A )=879405﹐這個數值從1968年開始﹐一直要用到1983年。在1976年國際天文學聯合會天文常數系統中﹐太陽視差仍屬於導出常數﹐取為8794148﹐它將從1984年起統一採用。後兩個參數都是根據行星雷達測距確定A以後﹐通過A 值推算出來的。