導航:首頁 > 安裝方法 > 風洞實驗動量測量方法

風洞實驗動量測量方法

發布時間:2022-07-27 22:14:34

A. 什麼是風洞試驗

你好!
流體力學方面的風洞實驗指在風洞中安置飛行器或其他物體模型,研究氣體流動及其與模型的相互作用,以了解實際飛行器或其他物體的空氣動力學特性的一種空氣動力實驗方法;而在昆蟲化學生態學方面則是在一個有流通空氣的矩形空間中,觀察活體蟲子對氣味物質的行為反應的實驗。
望採納,謝謝!!!

B. 風洞實驗是如何進行的

風洞是進行空氣動力學實驗的一種主要設備,幾乎絕大多數的空氣動力學實驗都在各種類型的風洞中進行。風洞的原理是使用動力裝置在一個專門設計的管道內驅動一股可控氣流,使其流過安置在實驗段的靜止模型,模擬實物在靜止空氣中的運動。測量作用在模型上的空氣動力,觀測模型表面及周圍的流動現象。根據相似理論將實驗結果整理成可用於實物的相似准數。實驗段是風洞的中心部件,實驗段流場應模擬真實流場,其氣流品質如均勻度、穩定度(指參數隨時間變化的情況)、湍流度等,應達到一定指標。風洞主要按實驗段速度范圍分類,速度范圍不同,其工作原理、型式、結構及典型尺寸也各異。低速風洞:實驗段速度范圍為0~100 米/秒或馬赫數Ma=0~0.3左右 ;亞聲速風洞:Ma=0.3~0.8左右;跨聲速風洞:Ma=0.8 ~1.4(或1.2)左右;超聲速風洞:Ma=1.5~5.0左右;高超聲速風洞Ma=5.0~10(或12);高焓高超聲速風洞Ma>10(或12)。風洞實驗的主要優點是:①實驗條件(包括氣流狀態和模型狀態兩方面)易於控制。②流動參數可各自獨立變化。③模型靜止,測量方便而且容易准確。④一般不受大氣環境變化的影響 。⑤ 與其他空氣動力學實驗手段相比,價廉、可靠等。缺點是難以滿足全部相似准數相等,存在洞壁和模型支架干擾等,但可通過數據修正方法部分或大部克服。

風洞實驗的主要項目有測力實驗、測壓實驗、傳熱實驗、動態模型實驗和流態觀測實驗等。測力和測壓實驗是測定作用於模型或模型部件(如飛行器模型中的一個機翼等)的氣動力及表面壓強分布,多用於為飛行器設計提供氣動特性數據。傳熱實驗主要用於研究超聲速或高超聲速飛行器上的氣動加熱現象。動態模型實驗包括顫振、抖振和動穩定性實驗等 ,要求模型除滿足幾何相似外還能模擬實物的結構剛度、質量分布和變形。流態觀測實驗廣泛用於研究流動的基本現象和機理。計算機在風洞實驗中的應用極大地提高了實驗的自動化、高效率和高精度的水平。

C. 風洞試驗的觀察方法

風洞中流態觀察方法大致為分兩類:第一類是示蹤方法;第二類是光學方法。
示蹤方法 在流場中添加物質,如有色液體、煙、絲線和固體粒子等,通過照相或肉眼觀察添加物隨流體運動的圖形。只要添加物足夠小,而且比重和流動介質接近,顯示出來的添加物運動的圖形就表示出氣流的運動。這是一種間接顯示法,特別適合於顯示定常流動。常用的有絲線法、煙流法、油流法、升華法、蒸汽屏法和液晶顯示法等六種:
①絲線法將絲線、羊毛等纖維粘貼在要觀察的模型表面或模型後的網格上,由絲線的運動(絲線轉動、抖動或倒轉) 可以判明氣流的方向和分離區的位置以及空間渦的位置、轉向等。圖6為一個模型實驗時機翼的絲線顯示氣體流動圖。現在又發展到用比絲線更細的尼龍絲,有時細到連肉眼都看不清。將尼龍絲用熒光染料處理後再粘在模型上。這種絲線在紫外線照射下顯示出來,並且可以拍攝下來。粘絲很細,對模型沒有影響,可同時進行測力實驗。此法稱為熒光絲線法。
②煙流法用風洞中特製煙管或模型上放出的煙流顯示氣體繞模型的流動圖形。這是一種很好的觀測方法。世界各國建設了不少煙風洞。通常是在風洞外把不易點燃的礦物油用金屬絲通電加熱而產生的煙引入風洞;也有將塗有油的不銹鋼或鎢絲放在模型前,實驗時通電將鎢絲加熱,產生細密的煙霧。為了保證煙束清晰不散,必須採用大收縮比的收縮段、穩定段或風洞入口加裝抗湍流網和採用吸振性能好的材料製造洞壁等措施,保持煙流為層流狀態。煙流法除用於觀察繞模型的流動,還可用來測量邊界層過渡點位置和研究渦流結構。圖7為模型煙流實驗中拍攝的照片。
③油流法在粘性的油中摻進適量指示劑(如炭黑)並滴入油酸,配製成糊狀液態物,均勻地塗在模型表面。實驗時通過指示劑顆粒沿流向形成的紋理結構,顯示出模型表面的流動圖形。如果油中加入少量熒光染料,則在紫外線照射下可以顯現出熒光條紋圖,稱為熒光油流圖。它可以顯示模型表面氣流流動方向、邊界層過渡點位置、氣流分離區、激波與邊界層相互干擾等流動現象。圖8為模型油流實驗照片。
④升華法將揮發性的液體或容易升華的固體噴塗在模型表面,依據塗料從模型上散失的速度與邊界層狀態有關的原理(在湍流邊界層內由於氣流的不規則運動導致該處蒸發量或升華量大於層流處)來區分邊界層狀態,確定過渡點的位置。
⑤蒸汽屏法在風洞中形成過飽和的蒸汽,在需要觀察的截面,垂直氣流方向射入一道平行光,氣流經過光面時,由於離心力的作用,旋渦內外蒸汽的含量是不同的,光的折射率因此不同,便能顯示出渦核的位置。此法多用來觀察大攻角脫體渦的位置。
⑥液晶顯示法利用液晶顏色隨溫度而改變的特性來識別層流、湍流邊界層和激波。液晶是一種油狀有機物,溫度較低時,無色透明,隨著溫度上升,便以紅、黃、綠、藍、無色的順序改變,能鑒別有微小溫差的層流和湍流邊界層流動以及激波前後的溫差。它適用於高速和超聲速流態觀察。液晶的塗法與漆類似,先稀釋,再噴塗。液晶對污物雜質敏感,噴塗時,模型表面必須干凈。
光學方法 根據光束在氣體中的折射率隨氣流密度不同而改變的原理製造出來的光學儀器,如陰影儀、紋影儀、干涉儀(見風洞測試儀器)和全息照相裝置等,都可用來觀察氣體流動圖形。這種方法不在流場中添加其他物質,不會干擾氣體流動,而且可以在短時間內採集大量的空間數據。它是一種直接顯示方法,特別適合於觀察可壓縮流動和非定常流動,如激波、尾流和邊界層過渡等。
除了以上兩大類方法外,還有一種向流場中注入能量的方法。如在低密度風洞中向氣流發射電子束,使氣體分子激發出熒光,熒光的光通量與氣流密度大小有關。根據光通量的變化,就可以顯示出氣流密度的變化,這種方法可以顯示高超聲速稀薄氣體流動的激波位置和形狀以及用於定量測量流場密度。
70年代後期,發展出一種彩色照相圖示流態觀察技術。它用總壓探管在所測流場區域掃描,並將感受的壓力轉換成電壓值。根據不同的電壓觸發不同顏色的光,在照相機上曝光。通過多種顏色信號光記錄的流場等壓線圖,可以清晰地看到渦旋分布和飛機模型後的渦流圖像。這項技術最近發展成為直接把感測器感受的壓力信號記錄在磁帶上,並輸入計算機處理。感測器探頭可以用壓力探頭也可以用熱絲或熱膜或其他探頭。處理後的數據可由彩色電視顯示。因為不用照相裝置,而代之以計算機,這就帶來了很大的方便:可以一次處理很多數據(可以是一個也可以是好幾個探頭感受的數據);顯示的顏色可多達4 096種(但由於人眼解析度的限制,常用的也只有20~30種);對於特別有興趣的區域可以放大和增加顏色詳細顯示;此外,還可以根據需要,旋轉顯示的數據平面,以得到從不同角度觀察的流場彩色顯示圖像。例如,可以在垂直風洞軸線的平面觀察,也可以在平行風洞軸線的平面或其他任意平面觀察。高解析度的彩色電視屏幕可以用顏色和箭頭表示流動方向。

D. 問下什麼是動力學

動力學是理論力學的一個分支學科,它主要研究作用於物體的力與物體運動的關系。動力學的研究對象是運動速度遠小於光速的宏觀物體。動力學是物理學和天文學的基礎,也是許多工程學科的基礎。許多數學上的進展也常與解決動力學問題有關,所以數學家對動力學有著濃厚的興趣。

動力學的研究以牛頓運動定律為基礎;牛頓運動定律的建立則以實驗為依據。動力學是牛頓力學或經典力學的一部分,但自20世紀以來,動力學又常被人們理解為側重於工程技術應用方面的一個力學分支。

動力學的發展簡史

力學的發展,從闡述最簡單的物體平衡規律,到建立運動的一般規律,經歷了大約二十個世紀。前人積累的大量力學知識,對後來動力學的研究工作有著重要的作用,尤其是天文學家哥白尼和開普勒的宇宙觀。

17世紀初期,義大利物理學家和天文學家伽利略用實驗揭示了物質的慣性原理,用物體在光滑斜面上的加速下滑實驗,揭示了等加速運動規律,並認識到地面附近的重力加速度值不因物體的質量而異,它近似一個常量,進而研究了拋射運動和質點運動的普遍規律。伽利略的研究開創了為後人所普遍使用的,從實驗出發又用實驗驗證理論結果的治學方法。

17世紀,英國大科學家牛頓和德國數學家萊布尼茲建立了的微積分學,使動力學研究進入了一個嶄新的時代。牛頓在1687年出版的巨著《自然哲學的數學原理》中,明確地提出了慣性定律、質點運動定律、作用和反作用定律、力的獨立作用定律。他在尋找落體運動和天體運動的原因時,發現了萬有引力定律,並根據它導出了開普勒定律,驗證了月球繞地球轉動的向心加速度同重力加速度的關系,說明了地球上的潮汐現象,建立了十分嚴格而完善的力學定律體系。

動力學以牛頓第二定律為核心,這個定律指出了力、加速度、質量三者間的關系。牛頓首先引入了質量的概念,而把它和物體的重力區分開來,說明物體的重力只是地球對物體的引力。作用和反作用定律建立以後,人們開展了質點動力學的研究。

牛頓的力學工作和微積分工作是不可分的。從此,動力學就成為一門建立在實驗、觀察和數學分析之上的嚴密科學,從而奠定現代力學的基礎。

17世紀荷蘭科學家惠更斯通過對擺的觀察,得到了地球重力加速度,建立了擺的運動方程。惠更斯又在研究錐擺時確立了離心力的概念;此外,他還提出了轉動慣量的概念。

牛頓定律發表100年後,法國數學家拉格朗日建立了能應用於完整系統的拉格朗日方程。這組方程式不同於牛頓第二定律的力和加速度的形式,而是用廣義坐標為自變數通過拉格朗日函數來表示的。拉格朗日體系對某些類型問題(例如小振盪理論和剛體動力學)的研究比牛頓定律更為方便。

剛體的概念是由歐拉引入的。18世紀瑞士學者歐拉把牛頓第二定律推廣到剛體,他應用三個歐拉角來表示剛體繞定點的角位移,又定義轉動慣量,並導得了剛體定點轉動的運動微分方程。這樣就完整地建立了描述具有六個自由度的剛體普遍運動方程。對於剛體來說,內力所做的功之和為零。因此,剛體動力學就成為研究一般固體運動的近似理論。

1755年歐拉又建立了理想流體的動力學方程;1758年伯努利得到關於沿流線的能量積分(稱為伯努利方程);1822年納維得到了不可壓縮性流體的動力學方程;1855年許貢紐研究了連續介質中的激波。這樣動力學就滲透到各種形態物質的領域中去了。例如,在彈性力學中,由於研究碰撞、振動、彈性波傳播等問題的需要而建立了彈性動力學,它可以應用於研究地震波的傳動。

19世紀英國數學家漢密爾頓用變分原理推導出漢密爾頓正則方程,此方程是以廣義坐標和廣義動量為變數,用漢密爾頓函數來表示的一階方程組,其形式是對稱的。用正則方程描述運動所形成的體系,稱為漢密爾頓體系或漢密爾頓動力學,它是經典統計力學的基礎,又是量子力學借鑒的範例。漢密爾頓體系適用於攝動理論,例如天體力學的攝動問題,並對理解復雜力學系統運動的一般性質起重要作用。

拉格朗日動力學和漢密爾頓動力學所依據的力學原理與牛頓的力學原理,在經典力學的范疇內是等價的,但它們研究的途徑或方法則不相同。直接運用牛頓方程的力學體系有時稱為矢量力學;拉格朗日和漢密爾頓的動力學則稱為分析力學。

動力學的基本內容

動力學的基本內容包括質點動力學、質點系動力學、剛體動力學、達朗貝爾原理等。以動力學為基礎而發展出來的應用學科有天體力學、振動理論、運動穩定性理論,陀螺力學、外彈道學、變質量力學,以及正在發展中的多剛體系統動力學等。

質點動力學有兩類基本問題:一是已知質點的運動,求作用於質點上的力;二是已知作用於質點上的力,求質點的運動。求解第一類問題時只要對質點的運動方程取二階導數,得到質點的加速度,代入牛頓第二定律,即可求得力;求解第二類問題時需要求解質點運動微分方程或求積分。

動力學普遍定理是質點系動力學的基本定理,它包括動量定理、動量矩定理、動能定理以及由這三個基本定理推導出來的其他一些定理。動量、動量矩和動能是描述質點、質點系和剛體運動的基本物理量。作用於力學模型上的力或力矩,與這些物理量之間的關系構成了動力學普遍定理。

剛體的特點是其質點之間距離的不變性。歐拉動力學方程是剛體動力學的基本方程,剛體定點轉動動力學則是動力學中的經典理論。陀螺力學的形成說明剛體動力學在工程技術中的應用具有重要意義。多剛體系統動力學是20世紀60年代以來,由於新技術發展而形成的新分支,其研究方法與經典理論的研究方法有所不同。

達朗貝爾原理是研究非自由質點系動力學的一個普遍而有效的方法。這種方法是在牛頓運動定律的基礎上引入慣性力的概念,從而用靜力學中研究平衡問題的方法來研究動力學中不平衡的問題,所以又稱為動靜法。

動力學的應用

對動力學的研究使人們掌握了物體的運動規律,並能夠為人類進行更好的服務。例如,牛頓發現了萬有引力定律,解釋了開普勒定律,為近代星際航行,發射飛行器考察月球、火星、金星等等開辟了道路。

自20世紀初相對論問世以後,牛頓力學的時空概念和其他一些力學量的基本概念有了重大改變。實驗結果也說明:當物體速度接近於光速時,經典動力學就完全不適用了。但是,在工程等實際問題中,所接觸到的宏觀物體的運動速度都遠小於光速,用牛頓力學進行研究不但足夠精確,而且遠比相對論計算簡單。因此,經典動力學仍是解決實際工程問題的基礎。

在目前所研究的力學系統中,需要考慮的因素逐漸增多,例如,變質量、非整、非線性、非保守還加上反饋控制、隨機因素等,使運動微分方程越來越復雜,可正確求解的問題越來越少,許多動力學問題都需要用數值計演算法近似地求解,微型、高速、大容量的電子計算機的應用,解決了計算復雜的困難。

目前動力學系統的研究領域還在不斷擴大,例如增加熱和電等成為系統動力學;增加生命系統的活動成為生物動力學等,這都使得動力學在深度和廣度兩個方面有了進一步的發展。

E. 風洞實驗是如何測得模型氣動力的,.,....

用風洞天平啊,最常用的就是桿式天平了,力傳遞到天平上,天平變形產生應變,應變通過應變片或者感測器採集到電信號通過計算得到的,常規測力通常是這樣

F. 空氣動力學簡單實驗

空氣動力學是研究空氣和其他氣體的運動以及它們與物體相對運動時相互作用的科學,簡稱為氣動力學。空氣動力學重點研究飛行器的飛行原理,是航空航天技術最重要的理論基礎之一。在任何一種飛行器的設計中,必須解決兩方面的氣動問題:一是在確定新飛行器所要求的性能後,尋找滿足要求的外形和氣動措施;一是在確定飛行器外形和其他條件後,預測飛行器的氣動特性,為飛行器性能計算和結構、控制系統的設計提供依據。這些在飛行速度接近到超過聲速(又稱音速)時更為重要。

20世紀以來,飛機和航天器的外形不斷改進,性能不斷提高,都是與空氣動力學的發展分不開的。亞音速飛機為獲得高升阻比採用大展弦比機翼;跨音速飛機為了減小波阻採用後掠機翼,機翼和機身的布置滿足面積律;超音速飛機為了利用旋渦升力採用細長機翼(見機翼空氣動力特性);高超音速再入飛行器為了減少氣動加熱採用鈍的前緣形狀,這些都是在航空航天技術中成功地應用空氣動力學研究成果的典型例子。除此以外,空氣動力學在氣象、交通、建築、能源、化工、環境保護、自動控制等領域都得到廣泛的應用。

空氣動力學-研究方法

空氣動力學是通過理論和實驗的途徑並在理論和實驗結合的過程中發展起來的。理論研究首先是在實驗的基礎上建立正確的流動模型。氣體可以以很多自由度按不同的規律運動,但像超音速鈍體繞流(圖3)這樣的復雜的流動總是由流線型流動、旋渦或環流、邊界層、尾跡、激波和膨脹波(僅限於超音速流動)等成分組成,因而在仔細考察上述流動現象和它們相互作用的基礎上,有可能建立反映流動本質的流動模型,然後應用質量、動量和能量守恆定律建立正確描述流動的基本方程。一般來說,這些方程都是非線性的,採用適當的簡化假設後可以應用在場論基礎上發展起來的各種解析方法和奇異攝動法來求解。在數值計算方面,已經廣泛採用有限差分、有限元素、有限基本解等離散點的計算方法。在數值計算中,採用的方程和邊界條件既要正確地反映流動的物理本質,又要便於數學處理,而採用的方法既需注意數學上的收斂性、穩定性,又需注意它們在求解實際問題時的實用性。

實驗方法包括地面模擬試驗和飛行試驗。風洞因氣流易於控制和便於測量等原因,已成為空氣動力學最主要的實驗設備。在地面模擬設備中,只要滿足必要的相似准則就可以模擬真實飛行器的流場,但是滿足全部相似准則的完全模擬是十分困難的,只能實現保證主要因素相似的局部模擬(見實驗空氣動力學)。風洞實驗既能為飛行器設計直接提供數據,也能用於空氣動力學的基礎研究和應用研究,為理論提供流動模型和驗證理論,為設計提供新思想和新概念。為了提高風洞的實驗能力,需要不斷提高風洞性能(例如提高雷諾數、減少洞壁干擾和支架干擾、降低氣流的湍流度等)、發展先進測試技術(例如採用各種微型探頭、非接觸測量技術和動態流場測量技術等)、提高數據的質量、提高風洞運轉效率、建立將風洞實驗結果外推到飛行條件的方法。而風洞與計算機的結合可大大增加風洞的實驗能力。地面模擬試驗並不能完全復現真實的飛行條件,因此除地面模擬試驗外,還要利用火箭、試驗飛機和火箭橇等進行模型自由飛試驗和進行真實飛行器的飛行試驗。地面模擬試驗、飛行試驗和理論計算,已成為解決氣動問題的互相聯系、互相依賴、互相補充和互相驗證的三種手段。

空氣動力學實驗-分類和原理

空氣動力學實驗分實物實驗和模型實驗兩大類。實物實驗如飛機飛行實驗和導彈實彈發射實驗等,不會發生模型和環境等模擬失真問題,一直是鑒定飛行器氣動性能和校準其他實驗結果的最終手段,這類實驗的費用昂貴,條件也難控制,而且不可能在產品研製的初始階段進行,故空氣動力學實驗一般多指模型實驗。空氣動力學實驗按空氣(或其他氣體)與模型(或實物)產生相對運動的方式不同可分為3類:①空氣運動,模型不動,如風洞實驗。②空氣靜止,物體或模型運動,如飛行實驗、模型自由飛實驗(有動力或無動力飛行器模型在空氣中飛行而進行實驗)、火箭橇實驗(用火箭推進的在軌道上高速行駛的滑車攜帶模型進行實驗)、旋臂實驗(旋臂機攜帶模型旋轉而進行實驗)等。③空氣和模型都運動,如風洞自由飛實驗(相對風洞氣流投射模型而進行實驗)、尾旋實驗(在尾旋風洞上升氣流中投入模型,並使其進入尾旋狀態而進行實驗)等。進行模型實驗時,應保證模型流場與真實流場之間的相似,即除保證模型與實物幾何相似以外,還應使兩個流場有關的相似准數,如雷諾數、馬赫數、普朗特數等對應相等(見流體力學相似准數)。實際上,在一般模型實驗(如風洞實驗)條件下,很難保證這些相似准數全部相等,只能根據具體情況使主要相似准數相等或達到自准范圍。例如涉及粘性或阻力的實驗應使雷諾數相等;對於可壓縮流動的實驗,必須保證馬赫數相等,等等。應該滿足而未能滿足相似准數相等而導致的實驗誤差,有時也可通過數據修正予以消除,如雷諾數修正。洞壁和模型支架對流場的干擾也應修正。空氣動力學實驗主要測量氣流參數,觀測流動現象和狀態,測定作用在模型上的氣動力等。實驗結果一般都整理成無量綱的相似准數,以便從模型推廣到實物。

風洞和風洞實驗風洞是進行空氣動力學實驗的一種主要設備,幾乎絕大多數的空氣動力學實驗都在各種類型的風洞中進行。風洞的原理是使用動力裝置在一個專門設計的管道內驅動一股可控氣流,使其流過安置在實驗段的靜止模型,模擬實物在靜止空氣中的運動。測量作用在模型上的空氣動力,觀測模型表面及周圍的流動現象。根據相似理論將實驗結果整理成可用於實物的相似准數。實驗段是風洞的中心部件,實驗段流場應模擬真實流場,其氣流品質如均勻度、穩定度(指參數隨時間變化的情況)、湍流度等,應達到一定指標。風洞主要按實驗段速度范圍分類,速度范圍不同,其工作原理、型式、結構及典型尺寸也各異。低速風洞:實驗段速度范圍為0~100米/秒或馬赫數Ma=0~0.3左右;亞聲速風洞:Ma=0.3~0.8左右;跨聲速風洞:Ma=0.8~1.4(或1.2)左右;超聲速風洞:Ma=1.5~5.0左右;高超聲速風洞Ma=5.0~10(或12);高焓高超聲速風洞Ma>10(或12)。風洞實驗的主要優點是:①實驗條件(包括氣流狀態和模型狀態兩方面)易於控制。②流動參數可各自獨立變化。③模型靜止,測量方便而且容易准確。④一般不受大氣環境變化的影響。⑤與其他空氣動力學實驗手段相比,價廉、可靠等。缺點是難以滿足全部相似准數相等,存在洞壁和模型支架干擾等,但可通過數據修正方法部分或大部克服。

風洞實驗的主要項目有測力實驗、測壓實驗、傳熱實驗、動態模型實驗和流態觀測實驗等。測力和測壓實驗是測定作用於模型或模型部件(如飛行器模型中的一個機翼等)的氣動力及表面壓強分布,多用於為飛行器設計提供氣動特性數據。傳熱實驗主要用於研究超聲速或高超聲速飛行器上的氣動加熱現象。動態模型實驗包括顫振、抖振和動穩定性實驗等,要求模型除滿足幾何相似外還能模擬實物的結構剛度、質量分布和變形。流態觀測實驗廣泛用於研究流動的基本現象和機理。計算機在風洞實驗中的應用極大地提高了實驗的自動化、高效率和高精度的水平。

由於實際流動的復雜性,單純理論或計算結果都必須通過實驗驗證才能應用於實際問題,有關流動機制的研究更需要依靠實驗,因此空氣動力學實驗有著重要的意義和廣泛的發展前景。

閱讀全文

與風洞實驗動量測量方法相關的資料

熱點內容
馬原中歸納的方法有什麼局限性 瀏覽:509
燈具遙控安裝方法 瀏覽:985
在家地震預警有哪些方法論 瀏覽:399
氣缸圓柱度的檢測方法 瀏覽:214
東風制動燈故障原因和解決方法 瀏覽:309
簡諧運動研究方法 瀏覽:124
幼兒異物吸入的搶救方法有哪些 瀏覽:211
開衫毛衣尺寸的經典計算方法 瀏覽:356
廣電有線連接方法 瀏覽:827
局解血管的檢查常用方法 瀏覽:988
瑜伽的技巧和方法 瀏覽:835
寫出五種植物的傳播方法 瀏覽:99
治療脾氣差的最佳方法 瀏覽:814
花卉滿天星的種植方法 瀏覽:967
風控未通檢測方法 瀏覽:767
根管治療術的步驟和方法 瀏覽:180
去腳臭的簡單的方法 瀏覽:934
二年級語文教學方法和教學手段 瀏覽:69
學前教育研究方法課題 瀏覽:867
瑜伽胳膊鍛煉方法 瀏覽:124